Outline

Introduction

Sponsored search

Market with intermediaries

Introduction

Market is a system of exchange protocols

- compute the prices
- regulate the exchange

We focus on computing the prices.

An auction is a market organized by

- a seller: supply auction
- a buyer: procurement auction
Introduction

Markets in general are organized by

- universal buyers/sellers
 - merchants, traders, dealers,
 - entrepreneurs,
 - advertisers (push), solicitors (pull)
who mediate among the buyers and the sellers

- just like the universal goods
 - money
 - securities (bonds, equity, derivatives)
 - mediate among the goods

In this lecture

- Multi-item auctions
 - example: sponsored search
 - problem of incentive compatibility
 - Later: What is the value of advertising?

- Market with intermediaries
 - traders’ strategies
 - trading profits and social benefits

Outline

Introduction

Sponsored search

Sponsored search setting

Market vs auction

Generalized Second Price auction

Vickrey-Clarke-Groves Auction

Market with intermediaries

Sponsored search setting

<table>
<thead>
<tr>
<th>clickthrough rates</th>
<th>slots</th>
<th>advertisers</th>
<th>revenues per click</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>a</td>
<td>x</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>b</td>
<td>y</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>c</td>
<td>z</td>
<td>1</td>
</tr>
</tbody>
</table>

Sponsored search as a matching problem

<table>
<thead>
<tr>
<th>slots</th>
<th>advertisers</th>
<th>valuations</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>x</td>
<td>30, 15, 6</td>
</tr>
<tr>
<td>b</td>
<td>y</td>
<td>20, 10, 4</td>
</tr>
<tr>
<td>c</td>
<td>z</td>
<td>10, 5, 2</td>
</tr>
</tbody>
</table>
Market mechanism

- \(n \) buyers, \(n \) item
 - take \(n = 0, 1, \ldots, n - 1 \)
 - buyers valuations per item \(v = (v_i)_{i=0}^{n-1} \)
 - item prices \(p = (p_i)_{i=0}^{n-1} \)
 - matching \(\sigma_{vp} : n \to n \) assigns item \(\sigma_{vp}(i) \) to \(i \)
 - \(i \)'s utility \(u_i \in \mathbb{R} \) is
 \[
 u_i = v_{\sigma_{vp}(i)} - p_{\sigma_{vp}(i)}
 \]
Goal of the market mechanism

Maximize social welfare, i.e. buyers’ total payoff

\[U(v, p) = \sum_{i \in \mathcal{N}} u_i \]
\[= \sum_{i \in \mathcal{N}} v_{i\pi_i} - p_{\pi_i} \]
\[= \sum_{i \in \mathcal{N}} v_{i\pi_i} - P \]

where \(P = \sum_{i \in \mathcal{N}} p_i \)

Markets respect preference

To maximize utility, \(\sigma : \mathcal{N} \rightarrow \mathcal{N} \) maximizes valuations

\[v_{\sigma_i(i)} \geq v_j \]

Position auction mechanism

- \(n \) bidders, \(n \) positions
- bidders’ valuations \(v_i = w_i \cdot r \) where
 - bidders’ valuations per click \(v_i = (w_i)_n \)
 - position click-through rates \(r = (r)_n \)
- bidders bid \(b = (b)_n \)

Position auction mechanism

- \(n \) bidders, \(n \) positions
- bidders’ valuations \(v_i = w_i \cdot r \) where
 - bidders’ valuations per click \(v_i = (w_i)_n \)
 - position click-through rates \(r = (r)_n \)
- bidders bid \(b = (b)_n \)
- price per position \(\pi_{ij}(b) = p_i(b) \cdot r_j \) where
 - price per click \(p_i(b) = (p_i)_n \)
Position auction mechanism

- \(n \) bidders, \(n \) positions
- bidders' valuations \(v_i = w_i \cdot \eta \) where
 - bidders' valuations per click \(w = (w_i)_n \)
 - position click-through rates \(r = (r_i)_n \)
- bidders bid \(b = (b_i)_n \)
- price per position \(\pi_i(b) = p_i(b) \cdot \eta \) where
 - price per click \(p(b) = (p_i(b))_n \)
- matching \(\tau : n \times \mathbb{R}^+ \rightarrow n \) assigns item \(\tau(i, b) \) to \(i \)

Goal of the position auction mechanism

Maximize seller's revenue

\[
P(b) = \sum_{j=1}^{n} \pi_{\tau(j)}(b)
\]

\[
= \sum_{j=1}^{n} p_j(b) \cdot r_{\tau(j)}
\]

where

- all \(p_i \) grow with \(b \)
- bidder \(i \) bids \(b_i \) to maximize \(u_i(b) \).

Position auction mechanism

- \(n \) bidders, \(n \) positions
- bidders' valuations \(v_i = w_i \cdot \eta \) where
 - bidders' valuations per click \(w = (w_i)_n \)
 - position click-through rates \(r = (r_i)_n \)
- bidders bid \(b = (b_i)_n \)
- price per position \(\pi_i(b) = p_i(b) \cdot \eta \) where
 - price per click \(p(b) = (p_i(b))_n \)
- matching \(\tau : n \times \mathbb{R}^+ \rightarrow n \) assigns item \(\tau(i, b) \) to \(i \)
- \(i \)'s utility \(u_i : \mathbb{R}^n \rightarrow \mathbb{R} \) is
 \[
u_i(b) = \nu_{\tau(i)}(b) - \pi_{\tau(i)}(b) = (w_i - p_i(b)) \cdot r_{\tau(i)}
\]

Assumption

- The bidders are ordered by their bids
 \[b_1 \geq b_2 \geq b_3 \geq \cdots \geq b_n \]
- The positions are ordered by click-through rates
 \[r_1 \geq r_2 \geq r_3 \geq \cdots \geq r_n \]

Position auctions respect preference

To maximize \(p_i(b) \) with \(u_i(b) \) always use

- \(\tau(i, b) < \tau(j, b) \implies b_i \geq b_j \), i.e.
- \(\tau(i, b) = j \) if \(b_i \) is \(j \)-th largest entry in \(b \)

Generalized Second Price Auction

- \(n \) bidders, \(n \) positions
- bidders' valuations \(v_i = w_i \cdot \eta \) where
 - bidders' valuations per click \(w = (w_i)_n \)
 - position click-through rates \(r = (r_i)_n \)
- bidders bid \(b = (b_i)_n \)
Generalized Second Price Auction

- n bidders, n positions
- bidders’ valuations $v_i = w_i \cdot r_i$ where
 - bidders’ valuations per click $w_i = (w_i)_n$
 - position click-through rates $r_i = (r_i)_n$
- bidders bid $b = (b_i)_n$
- price per click $p_i(b) = b_{i+1}$

Does GSPA encourage truthful bidding?

<table>
<thead>
<tr>
<th>clickthrough rates</th>
<th>slots</th>
<th>advertisers</th>
<th>revenues per click</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>a</td>
<td>x</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>b</td>
<td>y</td>
<td>6</td>
</tr>
<tr>
<td>0</td>
<td>c</td>
<td>z</td>
<td>1</td>
</tr>
</tbody>
</table>

- with truthful bid: $u_i(7, 6, 1) = (7 - 6) \cdot 10 = 10$
- with untruthful bid: $u_i(5, 6, 1) = (7 - 1) \cdot 4 = 24$

Position auction example

<table>
<thead>
<tr>
<th>clickthrough rates</th>
<th>slots</th>
<th>advertisers</th>
<th>revenues per click</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>a</td>
<td>x</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>b</td>
<td>y</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>c</td>
<td>z</td>
<td>1</td>
</tr>
</tbody>
</table>

Matching problem view

<table>
<thead>
<tr>
<th>slots</th>
<th>advertisers</th>
<th>valuations</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>x</td>
<td>30, 15, 6</td>
</tr>
<tr>
<td>b</td>
<td>y</td>
<td>20, 10, 4</td>
</tr>
<tr>
<td>c</td>
<td>z</td>
<td>10, 5, 2</td>
</tr>
</tbody>
</table>
Idea

- How much does x subtract from social welfare?

slots	advertisers	valuations
\times | \times | 30, 15, 6
b | \times | 20, 10, 4
c | \times | $10^5\times$

If x weren't there, y would do better by 20–10–10, and z would do better by 5–0–3, for a total harm of 13.

Traders

Idea: Vickrey, Clarke, Groves

- Each bidder should pay the cost that their bid incurs on social welfare
 - i.e., the sum of the losses that they cause to other bidders

Vickrey-Clarke-Groves Auction

Notation

- B — set of bidders
- S — set of sellers (items)
- $v = (v_b)_{b \in B}$ — bidders’ valuations
- V_S^B — maximal total valuation

Remark

- If $\#B < \#S$, then add $\#S - \#B$ bidders with all valuations 0
- If $\#B > \#S$, then add $\#B - \#S$ sellers valued 0 by all.
Vickrey-Clarke-Groves Auction

- n bidders, n positions
- bidders’ valuations $v_{ij} = w_i \cdot r_j$ where
 - bidders’ valuations per click w_i, position click-through rates r_j.
- bidders bid $b = (b_i)_n$
- price per item $p_{ij}(b) = V_{B_i} - V_{B_j}$
- i's utility $u_i : \mathbb{R}^n \to \mathbb{R}$ is
 $u_i(b) = v_{ii} - \pi_i(b)$

Theorem

The VCG auction is incentive compatible: truthful bidding is the unique Nash equilibrium for all players.

Corollary

The VCG auction maximizes social welfare, i.e. the total utility of bidders.

Problem

Homework

For the sponsored search market

<table>
<thead>
<tr>
<th>item</th>
<th>clicks</th>
<th>views</th>
<th>clicks per view</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>3</td>
<td>1.67</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>3</td>
<td>2.33</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>4</td>
<td>0.5</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>2</td>
<td>0.5</td>
</tr>
</tbody>
</table>

compute seller’s revenue (i.e. the total of the prices charged for all items) if the positions are auctioned by a GSP auction and by a VCG auction

Show that neither of these mechanisms maximizes seller’s revenue.
Billion $ problem

Design an auction mechanism that maximizes seller's revenue.

Outline

Introduction

Sponsored search

Market with intermediaries

Toy market

- There is just one type of goods.
- Every buyer needs to buy one item.
- Every seller needs to sell one item.

Goal of the market

Find a bijection \(\sigma : \mathcal{B} \rightarrow \mathcal{S} \) that maximizes social benefit

\[
SB_{\sigma} = \sum_{i=1}^{n} v_i - w_{\sigma(i)}
\]
Market with intermediaries

- Just like the goods are compared through universal goods
 - money, securities
- the buyers' and the sellers' are connected through universal buyers/sellers
 - merchants, traders, advertisers

The intermediaries mediate the flows

- merchants buy, move and sell goods
- traders buy and sell goods without moving them
- advertisers and solicitors move information

Setting

- buyers $\mathcal{B} = \{B_1, B_2, B_3\}$
 - B_i's reserve price (valuation) is v_i
- sellers $\mathcal{S} = \{S_1, S_2, S_3\}$
 - S_j's reserve price (valuation) is w_j
- traders $\mathcal{T} = \{T_1, \ldots, T_m\}$
 - ask relation $\sim_A : \mathcal{T} \times \mathcal{B}$
 - T_i's buyers $B_k = \{B \in \mathcal{B} | T_i \sim_A B\}$
 - bid relation $\sim_B : \mathcal{T} \times \mathcal{S}$
 - T_i's sellers $S_j = \{S \in \mathcal{S} | S \sim_B T_i\}$

Market with intermediaries as a game

players: T_1, \ldots, T_m
moves: for the trader T_k the set of moves is

$$P_k = P_B \times P_A,$$

where

$$P_B = \mathbb{R}^p$$

and

$$P_A = \mathbb{R}^q$$

with $p = |\mathcal{S}_k|$ and $q = |\mathcal{B}_k|$

$B_k = (b_{k1}, b_{k2}, \ldots, b_{kp}) \in P_B$ are T_k's bid prices for all $S_j \in \mathcal{S}_k$

$A_k = (a_{k1}, a_{k2}, \ldots, a_{kq}) \in P_A$ are T_k's ask prices for all $B_j \in \mathcal{B}_k$
Market with intermediaries as a game

Play
- Each T_i announces its bid and ask prices $\rho_k = (a_k, b_k)$
- Each S_j agrees to sell to a T_i with a maximal b_j
- Each B_k agrees to buy from a T_i with a minimal a_k

Each T_i thus forms the sets of:
- Suppliers $\text{MS}_k = \{S_j \in S_j \mid \forall b_i \leq b_j\}$
- Customers $\text{MB}_k = \{B_k \in B_k \mid \forall a_i \geq a_k\}$

Distribution of social benefit

If the bijection $\sigma : S \rightarrow T$ that maximizes social benefit

$$SB_\sigma = \frac{\sum_{i=1}^{n} v_i - w_i}{m}$$

is found through the traders $\kappa : S \rightarrow T$, then the benefit is distributed

$$SB_\kappa = \frac{\sum_{i=1}^{n} (v_i - a_{\sigma(i)}) + (a_{\sigma(i)} - b_{\kappa(i)}) + (b_{\kappa(i)} - w_i)}{m}$$

where
- UB is the utility of the buyer
- UT is the utility of the trader
- US is the utility of the seller

Distribution of social benefit

If the bijection $\sigma : S \rightarrow T$ that maximizes social benefit

$$SB_\sigma = \frac{\sum_{i=1}^{n} v_i - w_i}{m}$$

is found through the traders $\kappa : S \rightarrow T$, then the benefit is distributed

$$SB_\kappa = \frac{\sum_{i=1}^{n} (v_i - a_{\sigma(i)}) + (a_{\sigma(i)} - b_{\kappa(i)}) + (b_{\kappa(i)} - w_i)}{m}$$

where
- UB is the utility of the buyer
- UT is the utility of the trader
- US is the utility of the seller

The traders maximize UT.

Implicit perfect competition

Dusko Pavlovic

II-5.

Introduction

Market with intermediaries as a game

Trader T_i’s utility
- If $\#\text{MB}_k \leq \#\text{MS}_k$ (sufficient supplies) then
 $$u_k(\beta) = \frac{\sum_{b_i \in \text{MB}_k} a_i - \sum_{b_i \in \text{MS}_k} b_i}{n}$$
- If $\#\text{MB}_k > \#\text{MS}_k$ (insufficient supplies) then
 $$u_k(\beta) = \frac{\sum_{b_i \in \text{MB}_k} a_i - \sum_{b_i \in \text{MS}_k} b_i - \sum_{a_i \notin \text{MS}_k} a_i}{n}$$

where $\text{MS}_k - \text{MB}_k$ and $\text{MB}_k - \text{MS}_k$ are sets of buyers.

Distribution of social benefit

- But how do the traders achieve their payoffs?
- What are the equilibria in the trading game?
Indifference principle

At equilibrium

- All bid prices offered to a seller must be equal
- The seller will accept the bid from the trader who has access to the highest paying buyers
 - because that trader can increase the bid by ϵ

- All ask prices offered to a buyer must be equal
- The buyer will accept the offer from the trader who has access to the lowest charging sellers
 - because that trader can undercut the offer by ϵ

Ripple effects

0 \leq x \leq 2

1 \leq y \leq 2 1 \leq z \leq 3