II-7. Asymmetry
Dusko Pavlovic

Introduction
Lemons
EMH

Outline
Introduction
Market of lemons
The Efficient Market Hypothesis

Symmetric market
Based on trust

Symmetric market
supply
demand
Economics of information

Introduction
Lemons
EMH

Economics of information

Asymmetric market

Based on influence

Moral hazard

Transferring risks: government-backed lending

Principal Agent Problem

Agent acts against the Principal: bankers’ bonuses
Rent Seeking

Profits on social expense: guilds, lobbying, advertising

Market of lemons

Profiting from lack of information

Phishing for phools

Creating lack of information: “Financial derivative”

Market sublimation

- security goal: equilibrium of supply and demand
- security protocol: free exchange
- "attacks above": advertising, information asymmetry
 - security protocol correctly executed
 - security goal shifted

Outline

Introduction

Market of lemons
 - Akerlof’s analysis
 - Expectations analysis
 - Signaling and authentication

The Efficient Market Hypothesis
Market of lemons

Market of lemons: Akerloff’s analysis

1. Symmetric information
 - Both sellers and buyers can tell which cars are good.
 - Each good car is sold for its true value.
 - The lemons are unsold or given for free.
 - Since \(\# \text{buyers} > \#\text{cars for sale} \), the market clears.

2. Asymmetric information: Naive buyers
 - Only sellers know which cars are good.
 - The buyers
 - expect the cars with \(w_i \in [0, \frac{2}{3}] \) uniformly distributed
 - offer the average price \(p_0 = \frac{1}{3} \)
 - The sellers
 - withdraw the cars with sellers’ values \(v \in (\frac{2}{3}, \frac{5}{8}] \) and
 - clear the \(\frac{2}{3} \) of the cars with sellers’ values \(v \in [0, \frac{2}{3}] \)
 - The buyers
 - get the average value \(w_i^* = \frac{4}{5} \cdot \frac{2}{3} = \frac{8}{15} \)
 - pay the average price \(p_0 = \frac{1}{3} \)

3. Asymmetric information: Rational buyers
 - Only sellers know which cars are good.
 - The buyers
 - expect the cars with \(w_i \in [0, \frac{2}{3}] \) uniformly distributed
 - offer the average price \(p_0 = \frac{1}{3} \)
 - The sellers
 - withdraw the cars with sellers’ values \(v \in (\frac{2}{3}, \frac{5}{8}] \) and
 - clear the \(\frac{2}{3} \) of the cars with sellers’ values \(v \in [0, \frac{2}{3}] \)
 - The buyers
 - know that the values are now \(w_i \in [0, \frac{2}{3}] - [0, \frac{2}{3}] \)
 - offer the average price \(p^*_0 = \frac{1}{6} \)
Market of lemons: Akerloff’s analysis

3. Asymmetric information: Rational buyers

- Only sellers know which cars are good.
- The buyers
 - expect the cars with \(w_2 \in \left[0, \frac{27}{64} \right] \) uniformly distributed
 - offer the average price \(p_1 = \frac{27}{64} \).
- The sellers
 - withdraw the cars with sellers’ values \(v \in \left(\frac{27}{64}, x \right) \)
 - clear the \(\frac{27}{64} \) of the cars with values \(v \in \left[0, \frac{27}{64} \right] \).
- The buyers
 - know that the values are \(w_3 \in \left[0, \frac{81}{256} \right] \)
 - offer the average price \(p_3 = \frac{81}{256} \).

Industry collapse:
- \(w, p \searrow 0 \)
- The market collapses!
Equilibria with asymmetric information

The cases

- belief e vs reality a
 - if \(e \in [a,1] \), then the buyers’ overpay the average value of the cars
 - if \(e \in [0,a] \), then the buyers don’t overpay

- offer \(3e + 3 \) vs valuation intervals [2, 3] and [5, 6]
 - if \(e \in \left[\frac{2}{3}, 1 \right] \), then \(p^* = 3e + 3 \in [5,6] \) clears all cars
 - if \(e \in (0, \frac{2}{3}) \), then \(p^* = 3e + 3 \in (3,5) \) overpays the bad cars and does not get the good cars,
 - if \(e = 0 \), then \(p^* = 3 \) clears the bad cars.

Market with lemons: Expectations

Summary

The equilibria are

- buying all cars with \(e = a \) and \(p^* = 3a + 3 \in [5,6] \), provided that \(a \in \left[\frac{2}{3}, 1 \right] \)
- buying only bad cars with \(e = 0 \) and \(p^* = 3 \)

Asymmetric information

- Only the sellers can tell the cars apart.
- Like before, the buyers settle on the expectation
 \[
 \text{cars for sale} = \frac{1}{3} \cdot \text{good} + \frac{1}{3} \cdot \text{bad} + \frac{1}{3} \cdot \text{lemons}
 \]
 and they are willing to pay per car
 \[
 p^*_1 = \frac{1}{3} \cdot 6 + \frac{1}{3} \cdot 3 = 3
 \]
 - Since \(p^*_1 < 5 \), the good cars are withdrawn.
Market with lemons: Expectations

Asymmetric information
- Only the sellers can tell the cars apart.
- Like before, the buyers settle on the expectation
 \[\text{cars for sale} = \frac{1}{2} \cdot \text{bad} + \frac{1}{2} \cdot \text{lemons} \]
 so that the buyers are willing to pay per car
 \[\rho^*_2 = \frac{1}{2} \cdot 3 = \frac{3}{2} \]
- Since \(\rho^*_2 < 2 \), the bad cars are withdrawn.

Example

Collateralized debt obligations (CDOs)
- Let a CDO, \(A \), consist of
 - 100 mortgages
 - each worth 1M
 - default probability 10%
 - expected value of \(A \) is 90M

Example

Collateralized debt obligations (CDOs)
- Let a CDO, \(A \), consist of
 - 100 mortgages
 - each worth 1M
 - default probability 10% \(\longrightarrow \) lemons
 - expected value of \(A \) is 90M

Solutions of information asymmetry

Information is provided in authenticated signals:
- certificates
- warranties
- reputation and feedback systems
- risk sharing
- ...
Example

Collateralized debt obligations (CDOs)

- Let a CDO A consist of
 - 100 mortgages
 - each worth 1M
 - default probability 10% —— lemons
 - expected value of A is 90M

- Problem: assure the buyer that the risk is $\leq 10\%$

- Solution: seller keeps the risky part of A
 - sell senior tranche: 85%
 - keep junior tranche: 15%
 - all defaults up to 15% go into the junior tranche

Market information security

- Market is an information processing plant
 - input: behaviors and utilities
 - output: prices

Security requirements on the market

- confidentiality: conceal private data (valuations, …)
- authenticity: prove public data (CDOs, …)

Attacks on the market

- against confidentiality and privacy: tracking, differential pricing, …
- against integrity and authenticity: spam, phishing, maladvertizing, booby-trapped CDOs, …
- moral hazard, principal-agent problem, rent-seeking, …
- fraud: pyramid schemes, Libor rigging, malicious short selling, …

Efficient Market Hypothesis

“Prices fully reflect all available information.”

Eugene Fama
Efficient Market Hypothesis

Question
What is "all available information"?

Answer
- strong EMH: past prices
- semi-strong EMH: public information (past prices, news...)
- weak EMH: public and private information (valuations, strategies, inside information...)

Efficient Market Hypothesis

Question
What does it mean that "Prices reflect all available information"?

Answer (P. Samuelson)
It means that there are no arbitrage opportunities on the market, i.e. that the random variable

\[X = \text{expected return} - \text{predicted return} \]

- is unpredictable
- has the mean value 0

Efficient Market Hypothesis

Question
Why do prices reflect available information?

Answer
Otherwise, there would be arbitrage opportunities

- i.e., there would be successful gambles on \(X \), based on additional information

Efficient Market Hypothesis

EMH on street
Eugene Fama is walking down the street with a friend. They come upon a $100 bill lying on the ground. The companion reaches down to pick it up, but Fama says: "Don’t bother. If it were a genuine $100 bill, someone would have already picked it up".