

4 D > 4 B > 4 E > 4 E > 9 Q @

Market of lemons: Akerloff's analysis

3. Asymmetric information: Rational buyers

• Only sellers know which cars are good.
• The buyers

• expect the cars with $w_1 \in \left[0, \frac{9x}{8}\right]$ uniform

• offer the average price $p_1 = \frac{9x}{16}$.

• The sellers

• withdraw the cars with sellers' values $v \in \left[0, \frac{9x}{16}, x\right]$ and

• clear the $\frac{9}{16}$ of the cars with sellers' values $v \in \left[0, \frac{9x}{16}\right]$.

• The buyers

• know that the values are $w_2 \in \left[0, \frac{9}{16} \cdot \frac{3x}{2}\right] = \left[0, \frac{27x}{32}\right]$ • offer the average price $p_2 = \frac{27x}{64}$

←□ → ←₫ → ← ឨ → ← ឨ → 9 へ (*)

Equilibria with asymmetric information

The cases

- ▶ belief e vs reality a
 - if $e \in (a, 1]$, then the buyers' overpay the average value of the cars
 - if $e \in [0, a]$, then the buyers don't overpay
- offer 3e + 3 vs valuation intervals [2, 3] and [5, 6]
 - if $e \in [\frac{2}{3}, 1]$, then $p^* = 3e + 3 \in [5, 6]$ clears all cars
 - if $e \in (0, \frac{2}{3})$, then $p^* = 3e + 3 \in (3, 5)$ overpays the bad cars and does not get the good cars,
 - if e = 0, then $p^* = 3$ clears the bad cars.

40×40×40×40×40×

4 m > 4 m >

Equilibria with asymmetric information

Combining the cases into equilibria

- ▶ if $e \in \left[\frac{2}{3}, a\right]$, then $p^* = 3e + 3 \in [5, 6]$ clears all cars, and does not overpay them
- if e = 0 then p* = 3 clears the bad cars, and does not overpay them

II-7.
Asymmetry
Dusko Pavlovic
Introduction
Lemons
Akeriott
Expectations
Signating

Equilibria with asymmetric information

Summary

The equilibria are

- buying all cars with e=a and $p^*=3a+3\in[5,6]$, provided that $a\in\left[\frac{2}{3},1\right]$
- ▶ buying only bad cars with e = 0 and $p^* = 3$

II-7.
Asymmetry
Dusko Pavlovic
Introduction
Lemons
Akeriot
Expectations
Signaling
EMH

Dusko Pavlovic

ntroduction

Market with lemons: Expectations

valuations:

	good cars	bad cars	lemons
sellers	5	2	0
buyers	6	3	0

quality:

all =
$$\frac{1}{3} \cdot good + \frac{1}{3} \cdot bad + \frac{1}{3} \cdot lemons$$

demand:

#buyers > #cars for sale

<□> <□> <≥> <≥> <≥> ≥ 9<€

Market with lemons: Expectations

Symmetric information

- ▶ Both sellers and buyers know which cars are good.
- ▶ Each good car is sold for $p \in [5, 6]$.
- ▶ Each bad car is sold for $p \in [2,3]$.
- ▶ Each lemon is sold for p = 0, or unsold.
- ► The market of value clears.

Market with lemons: Expectations

Asymmetric information

- Only the sellers can tell the cars apart.
- Like before, the buyers settle on the expectation

cars for sale
$$= \frac{1}{3} \cdot good + \frac{1}{3} \cdot bad + \frac{1}{3} \cdot lemons$$

and they are willing to pay per car

$$p_1^* = \frac{1}{3} \cdot 6 + \frac{1}{3} \cdot 3 = 3$$

▶ Since p_1^* < 5, the good cars are withdrawn.

II-7.
Asymmetry
Dusko Pavlovic
Introduction
Lemons
Aseroit
Expectations
Signaling
EMH

4 D > 4 D > 4 E > 4 E > 9 Q C

Market with lemons: Expectations

Asymmetric information

- ▶ Only the sellers can tell the cars apart.
- Like before, the buyers settle on the expectation

cars for sale
$$= \frac{1}{2} \cdot bad + \frac{1}{2} \cdot lemons$$

so that the buyers are willing to pay per car

$$p_2^* = \frac{1}{2} \cdot 3 = \frac{3}{2}$$

▶ Since p_2^* < 2, the bad cars are withdrawn.

II-7.
Asymmetry
Dusko Pavlovic
Introduction
Lemons
Aarott
Expectations
Signaling

Market with lemons: Expectations

Asymmetric information

- ▶ Only the sellers can tell the cars apart.
- Like before, the buyers settle on the expectation

so that the buyers are willing to pay per car

$$p_3^* = 0$$

The market collapses!

Especiations
Signaling
EMH

Dusko Pavlovic

Dusko Pavlovic

ntroduction

Solutions of information asymmetry

Information is provided in authenticated signals:

- certificates
- warranties
- reputation and feedback systems
- risk sharing

II-7.
Asymmetry
Dusko Pavlovic
Introduction
Lemons
Auerier
Expectations
Signaling
EMH

Example

Collateralized debt obligations (CDOs)

- ▶ Mortgages are a risky investment for banks:
 - default risks: loss
 - prepayment risks: no profit
- ► CDOs are bundles of mortgages
 - risky mortgages are packaged with safe mortgages
 - the risks are averaged out

<□> <₫> <≥> <≥> <≥ < >< <>> < </br>

4 m > 4 m >

< 마 > (명 > < 분 > < 분 > - 분 - 키익(연

4 D > 4 B > 4 E > 4 E > E 990

←□ > ←□ > ←□ > ←□ > ←□ > ←□

Example

Collateralized debt obligations (CDOs)

- ▶ Let a CDO A consist of
 - ► 100 mortgages
 - ► each worth 1M
 - default probability 10%
 - $\,\blacktriangleright\,$ expected value of $\mathcal A$ is 90M

Example

Collateralized debt obligations (CDOs)

- ► Let a CDO A consist of
 - ► 100 mortgages
 - each worth 1M
 - ${} \hspace{0.1cm} \hbox{$\scriptstyle \bullet$ } \hspace{0.1cm} \hbox{default probability } 10\% \longleftarrow \hbox{$\scriptstyle \text{lemons}$} \\$
 - ► expected value of \mathcal{A} is 90M

II-7.
Asymmetry
Dusko Pavlovic
Introduction
Lemons
Akartott
Expectations
Bignaling
EMH

40 × 40 × 45 × 45 × 5 × 90 0

4 D > 4 B > 4 B > 4 B > B 9 9 0

