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Abstract. In the practice of information extraction, the input data are usually

arranged into pattern matrices, and analyzed by the methods of linear algebra

and statistics, such as principal component analysis. In some applications, the

tacit assumptions of these methods lead to wrong results. The usual reason is

that the matrix composition of linear algebra presents information as flowing in

waves, whereas it sometimes flows in particles, which seek the shortest paths.

This wave-particle duality in computation and information processing has been

originally observed by Abramsky. In this paper we pursue a particle view of in-

formation, formalized in distance spaces, which generalize metric spaces, but

are slightly less general than Lawvere’s generalized metric spaces. In this frame-

work, the task of extracting the ’principal components’ from a given matrix of

data boils down to a bicompletion, in the sense of enriched category theory. We

describe the bicompletion construction for distance matrices. The practical goal

that motivates this research is to develop a method to estimate the hardness of

attack constructions in security.

1 Introduction

Dedication. When Samson Abramsky offered me the position of ’Human Capital Mo-

bility Research Fellow’ in his group at Imperial College back in 1993, I was an ex-

programmer with postdoctoral experience in category theory. It was a questionable in-

vestment. Category theoretical models of computation were, of course, already in use

in theoretical computer science; but the emphasis was on the word ’theoretical’. A cou-

ple of years later, I left academia to build software using categorical models. While it

is clear and well understood that Samson’s work and results consolidated and enriched

categorical methods of theoretical computer science, their applications in the practice

of computation may not be as well known. In the long run, I believe, the impact of

the methods and of the approach that we learned from Samson will become increas-

ingly clear, as the abstract structures that we use, including the fully abstract ones, are

becoming more concrete, more practical, and more often indispensable.

In the present paper, I venture into an extended exercise in enriched category theory,

directly motivated by concrete problems of security [17, 16] and of data analysis [18].

Although the story is not directly related to Samson’s own work, I hope that it is ap-

propriate for the occasion, since he is the originator of the general spirit of categorical

variations on computational themes, even if I can never hope to approach his balance

and style.



Motivation: Distances between algorithms

Suppose that you are given an algorithm a, and you need to construct another algorithm

b, such that some predicate P(a, b) is satisfied. Or more concretely, suppose that a is

a software system, and b should be an attack on a, contradicting a’s security claim by

realizing a property P(a, b). Since reverse engineering is easy [2, 5], we can assume that

the code of a is readily available, and your task is thus to code the attack b. Note that

a is in principle an algorithmic pattern, that can be implemented in many ways, and

may have many versions and instances. So your attack b should also be an algorithmic

pattern, related to a by some polymorphic transformation. The derivation of b from a

should thus be polymorphic, i.e. a uniform construction: it should be a program p that

inputs a description of a and outputs a corresponding description p(a) = b. How hard

is it to find p? An approach to answering such questions is suggested in algorithmic

information theory [25, 13]. The notion of Kolmogorov complexity is that the distance

from an algorithm a to an algorithm b can be measured by the length of the shortest

programs that construct b from a, i.e.

d (a, b) =
∧

p(a)=b

|p| (1)

where |p| denotes the length of the program p. It is easy to see that the above formula

yields the triangle law d (a, b) + d (b, c)
+

≥ d (a, c), where the superscript ’+’ means that

the uniform order relation ≥ is taken up to a constant, which is in this case the length

of the program composition operation, needed to get a program to construct c from a

by composing a program that constructs c from b with a program that constructs b from

a. Algorithmic information theory always works with such order relations [13, 4]. The

equation d (a, a)
+
= 0 holds in the same sense, up to the constant length of the shortest

identity program, that just inputs and outputs identical data. This distance of algorithms,

in the style of Kolmogorov complexity, was proposed in [16] as a tool to measure how

hard it is to construct an attack on a given system. The point was that a system could

be effectively secure even when some attacks on it exist, provided that these attacks are

provably hard to construct. The goal of the present note is to spell out some general

results about distance that turn out to be needed for this particular application.

But why do we need general results about distances to answer the concrete ques-

tion about the hardness of constructing attack programs from system programs? The

reason is that the task of finding an attack algorithm not too far from a system algo-

rithm naturally leads to the task of construcing a completion of the space around the

system algorithm. The attacker sees the system, and may be familiar with some other

algorithms in its neighborhood; but it is not known whether an attack exists, and how

far it is. The task of discovering the attack is the task of completing the space around the

system. And the construction of a completion is easier in general, than in some concrete

cases.

How does a real attacker search for an algorithm p to derive an attack b from the

system a? He is not trying to guess the construction in isolation, but in the context of

his algorithmic knowledge. This knowledge has at least two components. On one hand,

there is some algorithmic knowledge A about the software systems a0, a1, a2 . . ., and a



distance measure A × A
dA

−−→ [0,∞] between them, which express how they are related

with each other. On the other hand, there is some algorithmic knowledge B about the

attacks b0, b1, b2 . . ., and their distances B×B
dB

−−→ [0,∞]. Last but not least, there is some

knowledge which attacks are related to which systems. This knowledge is expressed as

a distance matrix A × B
Φ
−→ [0,∞], where shorter distances suggest easier attacks. In

order to determine whether there are any attacks in the proximity of a given system

a, our task is to conjoin the distance space A of systems with the distance space B

of attacks consistently with the distance matrix A × B
Φ
−→ [0,∞] where the observed

connections between the systems and attacks are recorded. In this conjoined space, we

need to find the unknown attacks close to the target system. We find them by completing

the space of the known attacks. But since the completion is in general an infinite object,

we first study it abstractly, to determine how to construct just the parts of interest.

Related work. The completions that we study are based on Lawvere’s view of metric

spaces as enriched categories [10]. Lawvere’s generalized metric spaces were exten-

sively used in denotational semantics of programming languages [22, 3, 9], and recently

in ecology [12], following a renewed mathematical interest in the enriched category

approach [11]. In my own work, closely related results arose in the framework of in-

formation extraction and concept analysis [18]. That work was, however, not based on

distance spaces as categories enriched in the additive monoid [0,∞], but on proximity

spaces, or proxets, as categories enriched in the multiplicative monoid [0, 1]. Proxets

are a more natural framework for concept analysis, because they generalize posets, as

categories enriched over the multiplicative monoid {0, 1}, and the existing theory and

intuitions are largely based on posets. Distance spaces, on the other hand, appear to be

a more convenient framework for relating algorithms.

Outline of the paper. In Sec. 2 we define distance spaces and describe some examples.

In Sec. 3 we spell out the notions of limit in distance spaces, the basic completion

constructions, and the adjunctions as they arise from the limit preserving morphisms.

In Sec. 4, we introduce distance matrices, and describe their decomposition. In Sec. 5

we put the previously presented components together to construct the bicompletions of

distance matrices. Sec. 6 provides a summary of the obtained results and a discussion

of future work.

2 Distance spaces

2.1 Definition and background

Definition 2.1. A distance space is a set A with a metric dA : A × A→ [0,∞] which is

– reflexive: d (x, x) = 0,

– transitive: d (x, y) + d (y, z) ≥ d (x, z), and

– antisymmetric: d (x, y) = 0 = d (y, x) =⇒ x = y

A contraction between the distance spaces A and B is a function f : A → B such

that for all x, y ∈ A holds dA (x, y) ≥ dB ( f x, f y). The category of distance spaces and

contractions is denoted Dist.



Background. In topology, distance spaces have been studied since the 1930s under the

name quasi-metric spaces [23, 8]. The prefix ’quasi’ refers to the fact that the metric

symmetry law d(x, y) = d(y, x) is not necessarily satisfied. When the antisymmetry law

is not satisfied either, then the topologists speak of pseudo-quasi-metric spaces [24].

Lawvere [10] observed that pseudo-quasi-metric spaces, which he called generalized

metric spaces, could be viewed as enriched categories [7]. They are enriched over the

additive monoid [0,∞], viewed as a monoidal category with a uniqe arrow x → y if

and only if x ≥ y. The distance d(x, y) ∈ [0,∞] is thus viewed as the ’hom-set’ in the

enriched sense. Lawvere’s main result was the characterization of the Cauchy comple-

tion of a metric space as an enriched category construction. This view of distances and

contractions turned out to provide an alternative to domains for denotational semantics

[22], and their categorical completions were elaborated in [3, 9]. Distance spaces as de-

fined in 2.1 are a special case of generalized metric spaces, since they are required to

satisfy the antisymmetry law. This is mainly a matter of convenience, as the following

lemma shows.

Lemma 2.2. A map dA : A×A→ [0,∞] which is reflexive and transitive in the sense of

Def. 2.1 is also antisymmetric if and only if it satisfies either of the following equivalent

conditions

– (∀z. d (z, x) = d (z, y))⇒ x = y

– (∀z. d (x, z) = d (y, z))⇒ x = y

Proof. In the presence of transitivity and reflexivity, d (x, y) = 0 holds if and only if

∀z. d (z, x) ≥ d (z, y), or equivalently if and only if ∀z. d (x, z) ≤ d (y, z). The result

follows. �

Corollary 2.3. Distance spaces are just the skeletal generalized metric spaces.

2.2 Examples

The first example of a distance space is, of course, the interval [0,∞] itself, with the

metric

d[0,∞] (x, y) = x⊸ y =















y − x if x < y

0 otherwise
(2)

The⊸ notation is convenient because the operation d[0,∞] =⊸: [0,∞]×[0,∞]→ [0,∞]

makes [0,∞] into a closed category

x + y ≥ z ⇐⇒ x ≥ y⊸ z (3)

Any metric space is obviously an example of a distance space. But in distance spaces,

the distance d(a, b) from a to b does not have to be the same as the distance d(b, a)

from b to a. E.g., a may be on a hill, and b in the valley, and traveling one way may be

easier than traveling the other way. For our purposes described in the Introduction, this

distinction is quite important, since a program constructing an attack b from a system



code a does not have to be related in any obvious way to the program performing the

construction the other way.

For a non-metric family of distance spaces, take any poset (S ,⊑
S

) and define a dis-

tance space (WS , dWS ) by setting dWS (x, y) = 0 if x ⊑
S

y, otherwise ∞. The other way

around, any distance space A induces two posets, ΥA and ΛA, with the same underlying

set and

x ⊑
ΥA

y ⇐⇒ dA (x, y) = 0 x ⊑
ΛA

y ⇐⇒ dA (x, y) < ∞

The constructions W, Υ and Λ form the adjunctions Λ ⊣ W ⊣ Υ : Dist → Pos. Since

W : Pos →֒ Dist is an embedding, Pos is thus a reflective and correflective subcategory

of Dist.

Distance spaces are thus a common generalization of posets and metric spaces. For

an example not arising from posets of metric spaces, take any family of sets X ⊆ ℘X,

and define

d(x, y) = |y \ x| (4)

The distance of x and y is thus the number of elements of y that are not in x. If X is

a set of terms, say in a dictionary, and X is a set of documents, each viewed as a set

of terms, then the distance between two documents is the number of terms that occur

in one document and not in the other. In natural language processing, documents are

usually presented as multisets (bags) of terms, and the distance is defined in terms of

multiset subtraction, which generalizes the set difference used in (4). In any case, it is

clear that the asymmetry of the notion of distance is as essential for such applications

as it is for the one described in the Introduction.

2.3 Basic constructions

Given two distance space A and B, we define:

– dual Ao: take the same underlying set and define the dual metric to be dAo (x, y) =

dA (y, x);

– product A × B: take the cartesian product of the underlying sets and set the product

metric to be dA×B (x, u, y, v) = dA (x, y) ∨ dB (u, v)

– the power BA: take the set of contractions Dist(A, B) to be the underlying set and

set the metric to be dBA ( f , g) =
∨

x∈A dB ( f x, gx).

These constructions induce the natural correspondences

Dist(A, B) × Dist(A,C) � Dist(A, B ×C) and Dist(A × B,C) � Dist(A,CB)

Terminology. Contractions f : A → B are called covariant, whereas contractions

f : Ao → B are contravatiant.



3 Sequences and their limits

3.1 Left and right sequences

Intuitively, to complete a metric space means to add enough points so that every suitably

convergent sequence has a limit. But usually many different sequences have the same

limit. The main problem of the standard theory of completions is to recognize such

sequences. The categorical approach overcomes this problem by considering canonical

sequences. Instead of the sequences s, t : N → A such that limi→∞ si = ψ = limi→∞ ti,

we consider a canonical sequence ψ : A → [0,∞] where ψx intuitively denotes the

distance from ψ to x.

Definition 3.1. In a distance space A, a (canonical) sequence is defined to be a con-

traction into [0,∞]. More precisely, we define that

– a left sequence is a covariant contraction
←−
λ : A→ [0,∞]

– we write its value at x ∈ A as
←−
λ x

– a right sequence is a contravariant contraction −→̺ : Ao → [0,∞]

– we write its value at x ∈ A as x−→̺ .

Each of the sets of sequences

←−
A =
(

[0,∞]A
)o

and
−→
A = [0,∞](Ao)

forms a distance space, with the metrics

d←−
A

(

←−
λ ,
←−
θ

)

=

∨

x∈A

←−
θ x ⊸

←−
λ x and d−→

A

(

−→̺ ,−→µ
)

=

∨

x∈A

x−→̺ ⊸ x−→µ

Remarks. The conditions dA (x, y) ≥
←−
λ x ⊸

←−
λ y and dA (x, y) ≥ y−→̺ ⊸ x−→̺ , which

say that
←−
λ and −→̺ are left and right contraction respectively, are by (3) respectively

equivalent to
←−
λ x + d (x, y) ≥

←−
λ y d (x, y) + y−→̺ ≥ x−→̺

3.2 Limits

Definition 3.2. An element u of a distance space A is an upper bound of a right se-

quence −→̺ in A if for all x ∈ A holds

x−→̺ ≥ dA (x, u) (5)

An element ℓ of a distance space A is a lower bound of a left sequence
←−
λ in A if for

all y ∈ A holds

←−
λ y ≥ dA (ℓ, y) (6)



Proposition 3.3. An element u ∈ A is an upper bound −→̺ and ℓ ∈ A is a lower bound of
←−
λ if and only if the following conditions hold for all x, y ∈ A

dA (u, y) ≥
∨

x∈A

x−→̺ ⊸ dA (x, y) (7)

dA (x, ℓ) ≥
∨

y∈A

←−
λ y⊸ dA (x, y) (8)

Proof. Condition (3) implies that (9) and (10) are respectively equivalent with

x−→̺ + dA (u, y) ≥ dA (x, y) (9)

dA (x, ℓ) +
←−
λ y ≥ dA (x, y) (10)

The claim follows by instantiating y to u in (7) and x to ℓ in (8). �

Definition 3.4. The supremum
∐−→

̺ of the right sequence −→̺ and the infimum
∏←−

λ of

the left sequence
←−
λ are the elements of A that satisfy for every x, y ∈ A

dA

(

∐−→̺ , y
)

=

∨

x∈A

x−→̺ ⊸ dA (x, y) (11)

dA

(

x,
∏←−

λ

)

=

∨

y∈A

←−
λ y⊸ dA (x, y) (12)

Suprema and infima constitute the limits of a distance space.

The distance space A is right (resp. left) complete if every right (resp. left) sequence

has a limit. The suprema and the infima thus yield the operations

∐

:
−→
A → A and

∏

:
←−
A → A

One apparent shortcoming of treating sequences categorically, i.e. saturating them

to canonical sequences, is that it is not obvious how to define continuity, i.e. how to

distinguish the contractions which preserve suprema or infima. Clearly, a left continu-

ous contraction f : A → B should map the infimum of a left sequence
←−
λ in A into the

infimum of the f -image of
←−
λ in B. But what is the f -image of

←−
λ : A → [0,∞] in B?

This question calls for a slight generalization of the concept of sequence, and limit.

3.3 Weighted limits

Limits are a special case of weighted limits, which are studied in general enriched cate-

gories [7, Ch. 3]. We just sketch theory of weighted limits in distance spaces.

Definition 3.5. For distance spaces A and K we define

– left diagrams as pairs of contractions

〈

k : K → A,
←−
λ : K → [0,∞]

〉

– right diagrams as pairs of contractions
〈

k : K → A,−→̺ : Ko → [0,∞]
〉



Terminology and notation. The component k : K → A of a diagram is called its

shape. Using the angular brackets to denote the functions into cartesian products, we

also write

–

〈

k,
←−
λ

〉

: K → A × [0,∞] for

〈

k : K → A,
←−
λ : K → [0,∞]

〉

–
〈

k,−→̺
o〉

: K → A × [0,∞]o for
〈

k : K → A,−→̺ : Ko → [0,∞]
〉

Definition 3.6. The weighted supremum
∐

−→
̺ k of the right diagram 〈k,−→̺

o
〉 : K →

A× [0,∞]o and the weighted infimum
∏

←−
λ

k of the left diagram 〈k,
←−
λ 〉 : K → A× [0,∞]

are the elements of A that satisfy for every x, y ∈ A

dA

(

∐

−→
̺ k, y

)

=

∨

x∈K

x−→̺ ⊸ dA (kx, y) (13)

dA

(

x,
∏

←−
λ

k
)

=

∨

y∈K

←−
λ y⊸ dA (x, ky) (14)

Remarks. Limits arise as a special case of weighted limits, by viewing sequences as

diagrams of shape k = id : A → A. A contraction f : A → B thus maps, say, a

left sequence 〈id,
←−
λ 〉 : A → A × [0,∞] to the diagram 〈 f ,

←−
λ 〉 : A → B × [0,∞] in

B. More generally, it maps a left sequence 〈k,
←−
λ 〉 : K → A × [0,∞] to the diagram

〈 f ◦ k,
←−
λ 〉 : K → B × [0,∞] in B. It is thus clear and easy to state what it means that a

contraction preserves a weighted limit.

Definition 3.7. A contraction f : A→ B preserves

– weighted suprema if f
(

∐

−→̺ k
)

=
∐

−→̺ ( f ◦ k), and

– weighted infima if f
(

∏

←−
λ

k
)

=
∏

←−
λ

( f ◦ k).

On the other hand, although convenient to work with, weighted limits of diagrams in

distance spaces also boil down to the limits of suitable sequences. We just state this fact,

since it simplifies the construction of the completions; but leave the proof for another

paper, since the proof construction is not essential for the goal of the present paper.

Proposition 3.8. A distance space has

– the weighted suprema of all right diagrams if and only if it has the suprema of all

right sequences;

– the weighted infima of all left diagrams if and only if it has the infima of all left

sequences.

3.4 Completions

Every element a of a distance space A induces two representable sequences

∆a : A→ [0,∞] ∇a : Ao → [0,∞]

x 7→ dA (a, x) x 7→ dA (x, a)



These induced contractions ∆ : A →
←−
A and ∇ : A →

−→
A correspond to the Yoneda-

Cayley embeddings [15, Sec. III.2]. They make
←−
A into the lower completion, and

−→
A

into the upper completion of the distance space A.

Proposition 3.9.
←−
A is left complete and

−→
A is right complete. Each of them is universal

among distance spaces with the corresponding completeness properties, in the sense

that

– any monotone f : A → C into a complete distance space C induces a unique
∏

-preserving morphism f# :
←−
A → C such that f = f# ◦ ∆;

– any monotone g : A → D into a cocomplete distance space D induces a unique
∐

-preserving morphism g# :
−→
A → D such that g = g# ◦ ∇.

←−
A

∃! f#A

∆

∀ f
C

−→
A

∃!g#A

∇

∀g
D

These constructions for have been thoroughly analyzed in [3, 9]. Here we just state

the basic facts that justify our notations, and substantiate the further developments.

Proposition 3.10. (”The Yoneda Lemma”) For every −→̺ ∈
−→
A and

←−
λ ∈
←−
A and holds

a−→̺ =
∨

x∈A

x (∇a)⊸ x−→̺ = d−→
A

(

∇a,−→̺
)

←−
λb =

∨

x∈A

(∆b) x⊸
←−
λ x = d←−

A

(

←−
λ ,∆b

)

Instantiating in the preceding proposition
←−
λ to ∆a and −→̺ to ∇b yields

Corollary 3.11. The embeddings ∆ : A→
←−
A and ∇ : A→

−→
A are isometries

dA (a, b) = d−→
A

(∇a,∇b) = d←−
A

(∆a,∆b)

3.5 Adjunctions

Notation. In any distance space A, if is often convenient to abbreviate dA (x, y) = 0 to

x {
A

y. For f , g : A → B, it is easy to see that f {
BA

g if and only if f x {
B

gx for all

x ∈ A.

Proposition 3.12. For any contraction f : A→ B holds

(a) ⇐⇒ (b) ⇐⇒ (c) and (d) ⇐⇒ (e) ⇐⇒ ( f )

where



(a) f
(

∐−→̺
)

=
∐

f

(

−→̺
)

(b) ∃ f∗ : B→ A ∀x ∈ A ∀y ∈ B. dB ( f x, y) = dA (x, f∗y)

(c) ∃ f∗ : B→ A. idA { f∗ f ∧ f f∗ { idB

(d) f

(

∏←−
λ

)

=
∏

f

(

←−
λ

)

(e) ∃ f ∗ : B→ A ∀x ∈ A ∀y ∈ B. dB ( f ∗y, x) = dA (y, f x)

(f) ∃ f ∗ : B→ A. f ∗ f { idA ∧ idB { f f ∗

Each of the morphisms f ∗ and f∗ is uniquely determined by f , whenever they exist.

Definition 3.13. A right adjoint is a contraction satisfying (a-c) of Prop. 3.12; a left

adjoint satisfies (d-f). A (distance) adjunction between the distance spaces A and B is a

pair of contractions f ∗ : A⇄ B : f∗ related as in (b-c) and (e-f).

Equations (11) and (12) immediately yield the following fact.

Proposition 3.14. Limits are adjoints to the Yoneda-Cayley embeddings:

dA

(

∐−→
̺ , y
)

= d−→
A

(

−→
̺ ,∇y

)

and dA

(

x,
∏←−

λ

)

= d←−
A

(

∆x,
←−
λ

)

Putting Propositions 3.12 and 3.14 together yields yet another familiar fact.

Proposition 3.15. The sup-completion∇ : A→
−→
A preserves any infima that exist in A.

The inf-completion ∆ : A→
←−
A suprema that exist exist in A.

3.6 Projectors and nuclei

Proposition 3.16. For any adjunction f ∗ : A⇄ B : f∗ holds

(a) ⇐⇒ (b) and (c) ⇐⇒ (d)

where

(a) ∀xy ∈ B. dA ( f∗x, f∗y) = dB (x, y)

(b) f ∗ f∗ = idB

(c) ∀xy ∈ A. dB ( f ∗x, f ∗y) = dA (x, y)

(d) f∗ f ∗ = idA

Definition 3.17. A map g from a distance space A to a distance space B is an embed-

ding if it preserves the distance, i.e. satisfies dA (x, y) = dB (gx, gy) for all x, y ∈ A. An

adjoint of an embedding is called a projection.

An adjunction p∗ : A ⇄ B : e∗ of a left projection and right adjoint, as in

Prop. 3.16(a-b), is called a reflection. An adjunction e∗ : A ⇄ B : p∗ of a left em-

bedding and right projection, as in Prop. 3.16(c-d), is called a coreflection.

Definition 3.18. A nucleus of the adjunction f ∗ : A ⇄ B : f∗ consists of a distance

space P f Q together with

– embeddings A
e∗
←֓ P f Q

e∗

→֒ B



– projections A
p∗

։ P f Q
p∗
և B

such that f ∗ = e∗p∗ and f∗ = e∗p∗.

Proposition 3.19. Any adjunction factors through its nucleus by reflection followed by

a coreflection. The nucleus of the adjunction f ∗ : A⇄ B : f∗ is in the form

P f Q = {〈x, y〉 ∈ A × B | f ∗x = y ∧ x = f∗y} (15)

and the factoring is

A
p∗

f∗

P f Q
e∗

e∗

B

p∗

f ∗

Any right adjoint factors through the nucleus by a right projection followed by a right

embedding, and any left adjoint factors through the nucleus by a left projection followed

by a left embedding. This factorization is unique up to isomorphism.

Proof. For any adjunction f ∗ : A⇄ B : f∗, form the distance spaces

P f QA = {x ∈ A | f∗ f ∗x = x} P f QB = {y ∈ B | f ∗ f∗y = y}

are easily seen to be isomorphic with the nucleus. The factorisation is thus

P f QA
e∗

A

f ∗

p∗

B

f∗

p∗

P f QB

e∗

�

3.7 Cones and cuts

The cone extensions are the contractions ∆# and ∇#

−→
A

∆
#A

∇

∆ ←−
A

∇#

a
(

∆
#−→̺
)

=

∨

x∈A

x−→̺ ⊸ d (x, a)

(

∇#

←−
λ

)

a =
∨

x∈A

←−
λ x ⊢ d (a, x)



induced by the universal properties of the Yoneda embeddings∇ and ∆, as per Prop. 3.9.

Since ∆# thus preserves suprema, and ∇# preserves infima, Prop. 3.12 implies that each

of them is an adjoint, and it is not hard to see that they are adjoint to each other, i.e.

∆
# :
−→
A ⇄

←−
A : ∇#.

Proposition 3.20. For every −→̺ ∈
−→
A every

←−
λ ∈
←−
A holds

(

−→̺ { ∇#∆
#−→̺ and ∇#∆

#−→̺ { −→̺
)

⇐⇒ ∃
←−
λ . −→̺ = ∆#←−λ

(

←−
λ { ∆#∇#

←−
λ and ∆

#∇#

←−
λ {

←−
λ

)

⇐⇒ ∃
−→̺ .
←−
λ = ∇#

−→̺

The transpositions make the following subspaces isomorphic
(

−→
A

)

∇#∆
#
=

{

−→
̺ ∈
−→
A | −→̺ = ∇#∆

#−→̺

}

(

←−
A

)

∆#∇#

=

{

←−
λ ∈
←−
A |
←−
λ = ∆#∇#

←−
λ

}

Proof. Unfolding the definitions of ∇# and ∆# gives

a
(

∇#∆
#−→̺
)

=

∨

u∈A















∨

x∈A

x−→̺ ⊸ d (x, u)















⊸ d (a, u)

which shows that the first claim follows from the fact that for every u ∈ A holds
∨

x∈A

x−→̺ ⊸ d (x, u) ≥ a−→̺ ⊸ dA (a, u)

a−→̺ +















∨

x∈A

x−→̺ ⊸ d (x, u)















≥ dA (a, u)

a−→̺ ≥















∨

x∈A

x−→̺ ⊸ d (x, u)















⊸ dA (a, u)

�

Definition 3.21. The cones in a distance space A are the sequences in

(

−→
A

)

∇#∆
#

and
(

←−
A

)

∆#∇#

. A cut in A is a pair of cones γ = 〈−→γ ,←−γ 〉 ∈

(

−→
A

)

∇#∆
#
×

(

←−
A

)

∆#∇#

such that

−→
γ = ∇#

←−
γ . The set of cuts is denoted by

←→
A .

Lemma 3.22. There are bijections

(

−→
A

)

∇#∆
#
�
←→
A �

(

←−
A

)

∆#∇#

, extending the isomor-

phism

(

−→
A

)

∇#∆
#
�
(

←−
A

)

∆#∇#

from Prop. 3.20.

Proposition 3.23. The set of cuts
←→
A with the distance defined by

d←→
A

(γ, ϕ) = d−→
A

(

−→
γ ,
−→
ϕ
)

= d←−
A

(

←−
γ ,
←−
ϕ
)

is a left and right complete distance space.



Notation. We often abuse notation and write

– ←−̺ for the associated cone ∇#
−→̺ , and

–
−→
λ for the associated cone ∆#←−λ .

Proof of Prop. 3.23. The
←→
A -infima are constructed in

−→
A , the

←→
A -suprema in

←−
A . To spell

this out, consider
←−
λ :
←→
A → [0,∞] and −→̺ :

←→
A

o

→ [0,∞]. Extend them along the

isomorphisms
(

−→
A

)

∇#∆
#
�
←→
A �

(

←−
A

)

∆#∇#

�
←→
A

to get
←−
λ :

(

−→
A

)

∇#∆
#
→ [0,∞] and −→̺ :

(

←−
A

)o

∆#∇#

→ [0,∞]. Then

∏←−
λ =

←−
λ ◦ ∇ ∈

(

−→
A

)

∇#∆
#

∐

−→
̺ =

−→
̺ ◦ ∆ ∈

(

←−
A

)

∆#∇#

The claim now boils down to showing that the inclusion

(

−→
A

)

∇#∆
#
→֒
−→
A preserves infima,

whereas the inclusion

(

←−
A

)

∆#∇#

→֒
←−
A preserves the suprema. But this is immediate from

the next Lemma. �

Lemma 3.24. The limits of the cut sequences

−→
Υ :
−→
A

o

→ [0,∞]
←−
Λ :
−→
A → [0,∞]

−→
K :
←−
A

o

→ [0,∞]
←−
Ψ :
←−
A → [0,∞]

can be computed as follows

a

(

∐−→
Υ

)

=

∧

−→
ξ ∈
−→
A

a
−→
ξ +
−→
ξ
−→
Υ

(

∏←−
Λ

)

a =
←−
Λ(∇a)

a

(

∐−→
K

)

= (∆a)
−→
K

(

∏←−
Ψ

)

a =
∧

←−
ζ ∈
←−
A

←−
Ψ
←−
ζ +
←−
ζ a

Corollary 3.25. A distance space A has all suprema if and only if it has all infima.

Dedekind-MacNeille completion is a special case. If A is a poset, viewed as the

distance space WA, then
←→
W A is the Dedekind-MacNeille completion of A. The above

construction extends the Dedekind-MacNeille completion of posets [14] to distance

spaces, in the sense that it satisfies in the same universal property, spelled out in [1].

4 Distance matrices

4.1 Definitions

Definition 4.1. A distance matrix Φ from distance space A to distance space B is a

sequence Φ : Ao × B→ [0,∞]. We denote it by Φ : A# B, and the value of Φ at x ∈ A



and y ∈ B is written xΦy. The matrix composition of Φ : A # B and Ψ : B # C is

defined

x(Φ ;Ψ )z =
∧

y∈B

xΦy + yΨz

With this composition and the identities IdA : A # A where x(IdA)x′ = dA (x, x′),

distance spaces and distance space matrices form the category Matr.

Remark. Note that the defining condition dA (u, x) + dB (y, v) ≥ d (xΦy, uΦv), which

says that Φ is a contraction Ao × B→ [0,∞], can be equivalently written

dA (u, x) + xΦy + dB (y, v) ≥ uΦv (16)

Definition 4.2. Transposing the indices yields the transposed matrix:

Φ : A# B : xΦy

Φo : Bo
# Ao : yΦox

The dual Φ‡ : B# A of a matrix Φ : A# B has the entries

Φ : A# B : xΦy

Φ‡ : B# A : yΦ‡x =
∨

u∈A
v∈B

uΦv⊸ (dA (u, x) + dB (y, v))

A matrix Φ : A# B where Φ‡‡ = Φ is called a suspension.

Remarks. The transposition is obviously an involutive operation, i.e. Φoo
= Φ. It is

easy to derive from Prop. 3.20 that dΦ (x, y) ≥ dΦ‡‡ (x, y) holds for all x ∈ A and y ∈ B,

and that Φ = Φ‡‡ holds if and only if there is some Ψ : B# A such that Φ = Ψ‡. Since

Φ{ Ψ ⇒ Ψ‡ { Φ‡, it follows that Φ{ Φ‡‡ implies Φ‡ = Φ‡‡‡.

Proposition 4.3. Φ : A# B and Φ‡ : B# A satisfy Φ ;Φ‡ { IdA and Φ‡ ;Φ{ IdB.

Proof. The condition Φ ;Φ‡ { IdA is proven as follows:

∨

u∈A
v∈B

uΦv⊸
(

dA

(

u, x′
)

+ dB (y, v)
)

≥ xΦy⊸ dA

(

x, x′
)

xΦy +

























∧

u∈A
v∈B

uΦv⊸
(

dA

(

u, x′
)

+ dB (y, v)
)

























≥ dA

(

x, x′
)

xΦy + yΦ‡x′ ≥ dA

(

x, x′
)

The second condition is proven analogously. �



Definition 4.4. A matrix Φ : A # B is embedding if Φ ;Φ‡ = IdA; and a projection if

Φ‡ ;Φ = IdB.

Definition 4.5. A decomposition of a matrix Φ : A # B consists of a distance space

D, with

– projection matrix P : A# D, i.e. dD (d, d′) =
∧

x∈A dP‡x + xPd′,

– embedding matrix E : D# B, i.e. dD (d, d′) =
∧

y∈B dEy + yE‡d′,

such that Φ = P ; E, i.e. xΦy =
∧

d∈D xPd + dEy.

Matrices as adjunctions. A matrix Φ : A# B can be equivalently presented as either

of the two contractionsΦ• and Φ•, which extend to Φ∗ and Φ∗ using Prop. 3.9

Ao × B
Φ
−→ [0,∞]

A
Φ•
−−→
←−
B B

Φ•

−−→
−→
A

−→
A

Φ∗

−−→
←−
B

←−
B

Φ∗
−−→
−→
A

(

Φ∗
−→
̺
)

b =
∨

x∈A

x−→̺ ⊸ xΦb

(

Φ∗
←−
λ

)

a =
∨

y∈B

←−
λ y⊸ aΦy (17)

Both extensions, and their nucleus, are summarized in the following diagram

A
∇

◦

Φ

Φ•

−→
A

Φ∗ PΦQ

e∗

e∗

p∗

p∗

B
∆

Φ•

←−
B

Φ∗ (18)

The adjunction Φ∗ :
−→
A ⇄

←−
B : Φ∗ means that

d←−
B

(

Φ∗
−→
̺ ,
←−
λ

)

=

∨

y∈B

←−
λ y⊸ (Φ∗−→̺ )y =

∨

x∈A

x−→̺ ⊸ x(Φ∗
←−
λ ) = d−→

A

(

−→
̺ , Φ∗

←−
λ

)

holds. The other way around, it can be shown that any adjunction between
−→
A and

←−
B is

completely determined by the induced matrix from A to B.

Proposition 4.6. The matrices Φ ∈ Matr(A, B) are in a bijective correspondence with

the adjunctionsΦ∗ :
−→
A ⇄

←−
B : Φ∗.

Lemma 4.7. d←−
B

(Φ∗∇x,∆y) = xΦy = d−→
A

(∇x, Φ∗∆y)



4.2 Decomposition through nucleus

Proposition 4.8. For every −→α ∈
−→
A every

←−
β ∈
←−
B holds

−→
α { Φ∗Φ

∗−→α and Φ∗Φ
∗−→α { −→α ⇐⇒ ∃

←−
β ∈
←−
B . −→α = Φ∗

←−
β

←−
β { Φ∗Φ∗

←−
β and Φ∗Φ∗

←−
β {

←−
β ⇐⇒ ∃

−→
α ∈
−→
A .
←−
β = Φ∗

−→
α

The adjunction Φ∗ : A ⇄ B : Φ∗ induces the isomorphisms between the following

distance spaces

PΦQA =
{

−→α ∈
−→
A | −→α = Φ∗Φ

∗−→α

}

PΦQB =
{

←−
β ∈
←−
B |
←−
β = Φ∗Φ∗

←−
β

}

PΦQ =
{

γ = 〈
−→
γ ,
←−
γ 〉 ∈

−→
A ×
←−
B | −→γ = Φ∗

←−
γ ∧Φ∗

−→
γ =
←−
γ

}

with the metric

dPΦQ (γ, ϕ) = d−→
A

(

−→γ ,−→ϕ
)

= d←−
B

(

←−γ ,←−ϕ
)

Definition 4.9. PΦQ is called the nucleus of the matrix Φ. Its elements are the Φ-cuts.

Theorem 4.10. The nucleus PΦQ of the adjunction Φ∗ :
−→
A ⇄

←−
B : Φ∗ induces the

decomposition of the matrix Φ : A# B into

– the projection P∗ : A# PΦQ with xP∗〈−→α,
←−
β 〉 = x−→α , and

– the embedding E∗ : PΦQ# B with 〈−→α,
←−
β 〉E∗y =

←−
β y

where 〈−→α,
←−
β 〉 ∈ PΦQ is an arbitrary Φ-cut, i.e. −→α = Φ∗

←−
β and Φ∗−→α =

←−
β .

Proof (sketch). We prove that Φ = P∗; E∗ as follows:

x(P∗; E∗)y =
∧

−→α

xP∗
〈

−→
α,Φ∗

−→
α
〉

+

〈

−→
α,Φ∗

−→
α
〉

Ey

=

∧

−→
α

x−→α +
(

Φ∗
−→
α
)

y

≤ x∇x + (Φ∗∇x) y

= dA (x, x) + d←−
B

(Φ∗∇x,∆y)

= xΦy

using Lemma 4.7 at the last step. The facts that P∗ is a projection and E∗ is an embed-

ding matrix are proved using the following lemma, which says that PΦQ is
∐

-generated

by A and
∏

-generated by B. �



Lemma 4.11. The PΦQ-infima are computed in
−→
A, whereas its suprema are computed

in
←−
B. To state this precisely, consider

←−
λ : PΦQ → [0,∞] and −→̺ : PΦQo → [0,∞].

Extend them along the isomorphisms PΦQA � PΦQ � PΦQB to get
←−
λ : PΦQA → [0,∞]

and −→̺ : PΦQB
o
→ [0,∞]. Then

∏←−
λ =

←−
λ ◦ ∇ ∈ PΦQA

∐

−→
̺ =

−→
̺ ◦ ∆ ∈ PΦQB

are constructed in
−→
A and

←−
B, because PΦQA →֒

−→
A preserves the infima, whereas PΦQB →֒

←−
B preserves the suprema.

Corollary 4.12. The monotone maps A
∇
−→
−→
A

p∗

։ PΦQ
p∗
և
←−
B
∆

←− B

– preserve any infima that exist in A, and any suprema that exist in B,

– generate PΦQ by the suprema from A and by the infima from B, in the sense that for

any 〈−→α,
←−
β 〉 ∈ PΦQ holds

∐

−→
α

∇ = 〈
−→
α,
←−
β 〉 =

∏

←−
β

∆

5 Bicompletion

Any distance space morphism f : A → B induces two matrices, Ω f : A # B and

℧ f : B# A with

xΩ f y = dB ( f x, y) y℧ f x = dB (y, f x)

Lemma 5.1. For every matrix Ω f : A # B induced by a distance space morphism

f : A→ B holds Ω f ‡ = ℧ f .

Proof. Since y℧ f x = dB (y, f x) by definition, the claim boils down to y(Ω f )ox =

dB (y, f x), which can be proved as follows

y(Ω f )ox =
∨

u∈A
v∈B

dB ( f u, v)⊸ (dB (y, v) + dA (u, x))

≥ dB ( f x, f x)⊸ (dB (y, f x) + dA (x, x)) = dB (y, f x)

�

5.1 Nucleus as a completion

Lemma 5.2. If the distance space B is complete, then for any matrix Φ : A # B there

is a distance space morphism f : A→ B such that Φ = Ω f .

Corollary 5.3. If both A and B are complete, then any matrix Φ : A # B corresponds

to an adjunction Φ∗ : A⇄ B : Φ∗ such that Φ = ΩΦ∗ = ℧Φ∗.



Definition 5.4. A distance matrix homomorphism h : Φ → Γ where Φ : A # B and

Γ : C # D, is a pair of contractions h = 〈h0 : A→ C, h1 : B→ D〉 such that

– Ωh0 ;Γ = Φ ;Ωh1,

– h0 preserves any suprema that may exist in A,

– h1 preserves any infima that may exist in B.

Let MMat denote the category of distance space matrices and matrix morphisms.

Definition 5.5. A matrix Φ : A # B is complete if A has suprema and B infima1, and

Φ : Ao × B → [0,∞] preserves the infima. Let CMat denote the category of complete

matrices and matrix homomorphisms.

Proposition 5.6. IdPΦQ : PΦQ # PΦQ is the completion of Φ : A # B. In other words,

the functor P−Q : MMat → CMat is left adjoint to the full inclusion CMat →֒ MMat.

The unit of the adjunction η = 〈η0, η1〉 : Φ→ PΦQ consists of

η0 : A
∇
−→
−→
A

p∗

−→ PΦQ and η1 : B
∆

−→
←−
B

p∗
−→ PΦQ

6 Summary and discussion

Given an arbitrary distance matrix Φ : A # B, we have constructed the completion

Φ
η
−→ PΦQ such that

– A
η0

−→ PΦQ is
∐

-generating and
∏

-preserving,

– B
η1

−→ PΦQ is
∏

-generating and
∐

-preserving.

In terms of the motivating example of program transformations, and of the task of con-

joining the algorithmic knowledge about systems and about attacks, every Φ-cut is thus

a supremum of the system specifications in A, and an infimum of the attack specifica-

tions in B. Moreover, the suprema of Φ-cuts can be computed in
←−
B , whereas the infima

can be computed in
−→
A . While the suprema2 capture composite systems validating some

composite properties, the infima describe composite attacks where the invalidated prop-

erties add up.

But what has been achieved by providing this very abstract account? It turns out

that the actual completions provide fairly concrete information. There is no space to

illustrate this, but we sketch a high level view. The prior knowledge, represented by

the distance spaces A and B is updated by the empiric data, represented by the matrix

Φ : A # B. In the completion PΦQ, the empiric relations of as and bs are expressed as

distances. Following [21, 13, Ch. 4], the task of explaining these empiric links can then

be viewed as the task of finding short programs p with p(a) = b. After such completions,

some distances previously recorded in A and B may increase, since some programs may

be closer related a posteriori than a priori.

1 By Corollary 3.25, both A and B are thus complete
2 not unlike colimits of software specifications [20, 19]



The obvious task for future work is to refine the concrete applications of the pre-

sented construction. This is to some extent covered in the full paper, which is in prepa-

ration. The further work on quantifying the hardness of program derivations, and of

program transformations, branches in many directions. Distances arise naturally in this

framework, as described already in [16, Sec. 4.2]. In a different direction, it seems inter-

esting to study the bicompletions in other categorical frameworks, in particular where

the dualities fail in a significant way, as demonstrated a long time ago [6].
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