
Design and Analysis of Fair Content Tracing
Protocols

Geong Sen Poh

Technical Report

RHUL–MA–2009–15

14 May 2009

Department of Mathematics
Royal Holloway, University of London
Egham, Surrey TW20 0EX, England

http://www.rhul.ac.uk/mathematics/techreports

Design and Analysis of Fair Content Tracing

Protocols

Geong Sen Poh

Thesis submitted to the University of London
for the degree of Doctor of Philosophy

Information Security Group
Department of Mathematics

Royal Holloway, University of London

2009

Declaration

These doctoral studies were conducted under the supervision of Prof. Keith M.
Martin.

The work presented in this thesis is the result of original research carried out by
myself, whilst enrolled in the Information Security Group of Royal Holloway, Uni-
versity of London as a candidate for the degree of Doctor of Philosophy. This work
has not been submitted for any other degree or award in any other university or
educational establishment.

Geong Sen Poh
March 2009

2

Acknowledgements

First and foremost, I would like to express my deepest gratitude to my supervisor,
Keith Martin, for his supervision and encouragement throughout my study. His
invaluable comments and unwavering support have played a key role in shaping my
research ability and instilling in me the right research attitudes. I would also like to
thank my advisor, Chris Mitchell, for his constructive comments and advice.

I am very grateful to Allan Tomlison, Jason Crampton, Kenny Paterson and Peter
Wild for their guidance and support. Many thanks to Adrian Leung for fruitful
discussions. I am also indebted to David, Goi, JiQiang and Raphael Phan for the
feedback on my work. My sincere thanks to Hoon Wei for all his help and to Qiang
and ShengLan, without whom my settling down in the UK would not have been
so smooth. Thanks to all my colleagues and friends for making my stay at Royal
Holloway (especially the ISG) a most rewarding and memorable one.

To my parents and my brothers and sister, I cannot thank you enough for your
encouragement and support throughout my studies.

Special thank goes to my beloved wife, Fern Nee. Without her love and support, I
could not have possibly completed this.

Finally, I thank MIMOS Bhd for the generous financial support.

3

Abstract

The work in this thesis examines protocols designed to address the issues of tracing
illegal distribution of digital content in a fair manner.

In digital content distribution, a client requests content from a distributor, and the
distributor sends content to the client. The main concern is misuse of content by the
client, such as illegal distribution. As a result, digital watermarking schemes that
enable the distributor to trace copies of content and identify the perpetrator were
proposed. However, such schemes do not provide a mechanism for the distributor
to prove to a third party that a client illegally distributed copies of content. Fur-
thermore, it is possible that the distributor falsely accuses a client as he has total
control of the tracing mechanisms. Fair content tracing (FaCT) protocols were thus
proposed to allow tracing of content that does not discriminate either the distributor
or the client.

Many FaCT protocols have been proposed, mostly without an appropriate design
framework, and so there is no obvious and systematic way to evaluate them. There-
fore, we propose a framework that provides a definition of security and which enables
classification of FaCT protocols so that they can be analysed in a systematic man-
ner. We define, based on our framework, four main categories of FaCT protocols
and propose new approaches to designing them.

The first category is protocols without trusted third parties. As the name suggests,
these protocols do not rely on a central trusted party for fair tracing of content. It is
difficult to design such a protocol without drawing on extra measures that increase
communication and computation costs. We show this is the case by demonstrating
flaws in two recent proposals. We also illustrate a possible repair based on relaxing
the assumption of trust on the distributor.

The second category is protocols with online trusted third parties, where a central on-
line trusted party is deployed. This means a trusted party must always be available
during content distribution between the distributor and the client. While the avail-
ability of a trusted third party may simplify the design of such protocols, efficiency
may suffer due to the need to communicate with this third party.

The third category is protocols with offline trusted third parties, where a central
offline trusted party is deployed. The difference between the offline and the online

4

trusted party is that the offline trusted party need not be available during content
distribution. It only needs to be available during the initial setup and when there is
a dispute between the distributor and the client. This reduces the communication
requirements compared to using an online trusted party. Using a symmetric-based
cryptographic primitive known as Chameleon encryption, we proposed a new ap-
proach to designing such protocols.

The fourth category is protocols with trusted hardware. Previous protocols proposed
in this category have abstracted away from a practical choice of the underlying
trusted hardware. We propose new protocols based on a Trusted Platform Module
(TPM).

Finally, we examine the inclusion of payment in a FaCT protocol, and how adding
payment motivates the requirement for fair exchange of buying and selling digital
content.

5

Notation

FaCT Fair Content Tracing

R The set of real numbers

Z The set of integers

X Content space

X Original content

X ′ Watermarked content (e.g. marked with V)

X ′′ Doubly marked content (e.g. marked with V and W)

X̂ A found copy of content

X̃ A content that is marked with one or two watermarks

W Watermark space

V , W Watermark

K Key space

C A client who requests (or buys) content

D A distributor who distributes (or sells) content

CA A Certificate Authority who issues digital certificate

WCA A Watermark Certification Authority who generates watermark

PA A Payment Agent

KC A Key Centre who generates and distributes keys

A An arbiter who settles disputes between C and D

TTP A Trusted Third Party

TPM A trusted hardware known as the Trusted Platform Module

IMSR Integrity Measurement, Storage and Reporting, a mechanism to

validate the integrity of softwares and processes

RTM Root of Trust for Measurement, a computing engine that measures

the softwares and processes in a computing platform

RTS Root of Trust for Storage, a mechanism to store the

integrity measurements computed by the RTM

RTR Root of Trust for Reporting, a mechanism to report the

integrity measurements of a computing platform when requested

DAA Direct Anonymous Attestation, a group signature scheme used to

anonymously authenticate a TPM

DAA Issuer A Trusted Third Party that uses DAA to provide anonymous keys

for a client with TPM

6

Privacy CA A Trusted Third Party that provides anonymous keys to a client

with TPM

PKI Public Key Infrastructure

(pvkI , sskI) Signature key pair of I
(hekI , hdkI) Homomorphic encryption key pair of I
(pekI , pdkI) Asymmetric encryption key pair of I
(pvk∗

I , ssk∗
I) Anonymous signature key pair of I

(hek∗
I , hdk∗

I) Anonymous homomorphic encryption key pair of I
(pvk∗, ssk∗) One-time signature key pair

(hek∗, hdk∗) One-time homomorphic encryption key pair

[·]E(·)
An encrypted message generated using a symmetric encryption scheme

[·]PE(·)
An encrypted message generated using an asymmetric encryption scheme

[·]HE(·)
An encrypted message generated using a homomorphic encryption scheme

[·]SIG(·)
A digital signature

[·]COM (·)
A commitment

H(·) A hash value

CertsskI
(·) A digital certificate produced by I

{}AKE A secure communication channel with authenticated key exchange

IDI The identity information of I
AGR A content agreement with content description and licensing terms

PAY A payment token that contains payment information

info A general message that may contain any information

SIG A signature or a group of signatures

f(·) A general object representing cryptographic or watermarking

algorithms, for example, it can be an encryption algorithm

fWM () A general object representing a watermark detection algorithm

7

Contents

1 Introduction 15
1.1 Motivation . 15
1.2 Contributions . 17
1.3 Organisation of Thesis . 18

2 Fair Content Tracing Protocols 20
2.1 Motivation . 20

2.1.1 Content Distribution . 21
2.1.2 Content Tracing . 22
2.1.3 Fair Content Tracing . 23

2.2 Existing FaCT Protocols . 25
2.3 Building Blocks . 26

2.3.1 Digital Watermarking Schemes 26
2.3.2 Encryption Schemes . 33
2.3.3 Watermarking in the Encrypted Domain 39
2.3.4 Cryptographic Hash Functions 41
2.3.5 Digital Signature Schemes . 41
2.3.6 Zero-Knowledge Proofs . 43

2.4 Summary . 45

3 A Design Framework for FaCT Protocols 46
3.1 Why A Design Framework? . 47
3.2 Overview of the Framework . 48
3.3 Fundamentals . 49

3.3.1 Parties Involved . 49
3.3.2 Threats . 51
3.3.3 Security Requirements . 53
3.3.4 The Three Phases . 54

3.4 Environment . 55
3.4.1 Computing Resources . 55
3.4.2 Trust Infrastructures . 56
3.4.3 Building Blocks . 59

3.5 Classification . 60
3.5.1 Category 1: Protocols without Trusted Third Parties 61
3.5.2 Category 2: Protocols with Online Trusted Third Parties . . 65
3.5.3 Category 3: Protocols with Offline Trusted Third Parties . . 67

8

CONTENTS

3.5.4 Category 4: Protocols with Trusted Hardware 69
3.5.5 Adding Anonymity and Unlinkability 71
3.5.6 Adding Payment and Fair Exchange 74

3.6 Evaluation Criteria . 78
3.6.1 Brief Analysis of the Four Categories 79

3.7 An Example: The Memon-Wong Protocol 81
3.7.1 Security . 86
3.7.2 Efficiency . 87

3.8 Summary . 88

4 FaCT Protocols without Trusted Third Parties 89
4.1 Overview . 90
4.2 The Pfitzmann-Schunter Protocol . 91

4.2.1 Improvement Attempts by Kuribayashi and Tanaka 96
4.3 The Ibrahim-ElDin-Hegazy Protocols 96

4.3.1 The First Ibrahim-ElDin-Hegazy Protocol 98
4.3.2 The Second Ibrahim-ElDin-Hegazy Protocol 102
4.3.3 Flaws in the Protocols . 103
4.3.4 Williams-Treharne-Ho Analysis of the Protocols 107
4.3.5 Deng-Preneel Analysis of the Protocols 108

4.4 A Semi-Fair Content Tracing Protocol 109
4.5 Analysis . 114

4.5.1 Security . 114
4.5.2 Efficiency . 117

4.6 Summary . 119

5 FaCT Protocols with Online Trusted Third Parties 120
5.1 Overview . 120
5.2 The Lei-Yu-Tsai-Chan Protocol . 121

5.2.1 Deng-Preneel Analysis of the Protocol 126
5.3 The Wu-Pang Protocol . 127
5.4 The Ahmed-Sattar-Siyal-Yu Protocol 131

5.4.1 Flaws in ASSY Protocol . 135
5.5 Analysis . 137

5.5.1 Security . 137
5.5.2 Efficiency . 139

5.6 Summary . 142

6 FaCT Protocols with Offline Trusted Third Parties 143
6.1 Overview . 144
6.2 The Kuribayashi-Tanaka Information Gap Protocol 144
6.3 A Protocol based on Chameleon Encryption 149

6.3.1 Chameleon Encryption . 150
6.3.2 The CE Protocol . 153
6.3.3 Alternative Approaches . 157

6.4 Analysis . 158
6.4.1 Security . 158

9

CONTENTS

6.4.2 Efficiency . 161
6.5 Summary . 164

7 FaCT Protocols with Trusted Hardware 165
7.1 Overview . 166
7.2 The Fan-Chen-Sun Protocol . 166
7.3 Protocols based on TPM . 171

7.3.1 Trusted Platform Modules . 172
7.3.2 A Protocol Based on DAA 177
7.3.3 A Protocol Based on a Privacy CA 183

7.4 Analysis . 187
7.4.1 Security . 187
7.4.2 Efficiency . 190

7.5 Summary . 191

8 FaCT Protocols with Payment and Fair Exchange 192
8.1 Overview . 193
8.2 Adding Payment and Fair Exchange 193

8.2.1 Protocols without Trusted Third Parties 195
8.2.2 Protocols with Online Trusted Third Parties 197
8.2.3 Protocols with Offline Trusted Third Parties 198
8.2.4 Protocols with Trusted Hardware 198
8.2.5 Protocols with Anonymity and Unlinkability 199

8.3 A Protocol with Payment and Fair Exchange 201
8.3.1 Security . 207
8.3.2 Efficiency . 209

8.4 Summary . 210

9 Conclusion 211
9.1 Main Achievements . 211
9.2 Research Directions . 214

10

List of Figures

2.1 Cox et al.’s Spread Spectrum Watermarking Scheme 30
2.2 Chen and Wornell’s Scalar-QIM Algorithm [96] [21] 32
2.3 RSA Encryption Scheme with privacy homomorphism 37
2.4 Goldwasser-Micali Encryption Scheme 38
2.5 Paillier Homomorphic Encryption Scheme 39
2.6 Watermarking in the Encrypted Domain: Paillier and Spread Spectrum . . 40
2.7 RSA Signature Scheme . 43
2.8 BCC Homomorphic Bit Commitment Scheme based on Goldwasser-Micali [17] 44

3.1 A General Framework . 49
3.2 Protocols without TTPs – Initial Setup 62
3.3 Protocols without TTPs – Content Watermarking and Distribution 63
3.4 Protocols without TTPs – Identification and Dispute Resolution 64
3.5 Protocols with Online TTPs – Content Watermarking and Distribution . . 66
3.6 Protocols with Online TTPs – Identification and Dispute Resolution . . . 67
3.7 Protocols with Offline TTPs – Initial Setup 68
3.8 Protocols with TH – Content Watermarking and Distribution 69
3.9 Protocols with TH – Identification and Dispute Resolution 71
3.10 Protocols with Anonymity and Unlinkability 72
3.11 Payment Infrastructure . 74
3.12 Protocols with Fair Exchange . 75
3.13 MW Protocol – Initial Setup . 83
3.14 MW Protocol – Content Watermarking and Distribution 84
3.15 MW Protocol – Identification and Dispute Resolution 86

4.1 PS Protocol – Initial Setup . 92
4.2 PS Protocol – Content Watermarking and Distribution 93
4.3 PS Protocol – Identification and Dispute Resolution 95
4.4 IEH-1 – Initial Setup . 98
4.5 IEH-1 – Content Watermarking and Distribution 99
4.6 IEH-1 – Identification and Dispute Resolution 101
4.7 IEH-1 – Protocol Flows Diagram for All Three Phases 103
4.8 IEH-2 . 104
4.9 IEH-2 – Protocol Flows Diagram for All Three Phases 105
4.10 IEH Protocols: Attack 2 . 107
4.11 Semi-Fair Protocol – Initial Setup . 110

11

LIST OF FIGURES

4.12 Semi-Fair Protocol – Content Watermarking and Distribution 111
4.13 Semi-Fair Protocol – Identification and Dispute Resolution 112

5.1 LYTC Protocol – Initial Setup . 122
5.2 LYTC Protocol – Content Watermarking and Distribution 124
5.3 LYTC Protocol – Identification and Dispute Resolution 125
5.4 WP Protocol – Initial Setup . 129
5.5 WP Protocol – Content Watermarking and Distribution 130
5.6 WP Protocol – Identification and Dispute Resolution 131
5.7 ASSY Protocol – Initial Setup . 133
5.8 ASSY Protocol – Content Watermarking and Distribution 134
5.9 ASSY Protocol – Identification and Dispute Resolution 135

6.1 KTIG Protocol – Initial Setup . 146
6.2 KTIG Protocol – Content Watermarking and Distribution 147
6.3 KTIG Protocol – Identification and Dispute Resolution 149
6.4 CE Protocol – Initial Setup . 154
6.5 CE Protocol – Content Watermarking and Distribution 155
6.6 CE Protocol – Identification and Dispute Resolution 157

7.1 FCS Protocol – Initial Setup . 168
7.2 FCS Protocol – Content Watermarking and Distribution 168
7.3 FCS Protocol – Identification and Dispute Resolution 171
7.4 DAA Protocol – Initial Setup . 178
7.5 DAA Protocol – Content Watermarking and Distribution 179
7.6 DAA Protocol – Identification and Dispute Resolution 181
7.7 Privacy CA Protocol – Initial Setup . 184
7.8 Privacy CA Protocol – Content Watermarking and Distribution 185
7.9 Privacy CA Protocol – Identification and Dispute Resolution 186

8.1 Adding PA and FE: Protocols without TTPs 196
8.2 Adding PA and FE: The Semi-Fair Protocol 196
8.3 Dispute Resolution for FE: The Semi-Fair Protocol 197
8.4 Adding PA and FE: Protocols with Online TTPs 198
8.5 Adding PA and FE: Protocols with TH 199
8.6 Adding PA and FE: The DAA Protocol 201
8.7 Dispute Resolution for FE: The DAA Protocol 201
8.8 FE Protocol – Content Watermarking and Distribution 203
8.9 FE Protocol – Identification and Dispute Resolution 206
8.10 FE Protocol – Dispute Resolution for Fair Exchange 207

12

List of Tables

2.1 Quantisation: A Simple Example . 31

3.1 Issues and Requirements . 54
3.2 Main Characteristics of Existing FaCT Protocols 77
3.3 Adding Privacy Protection, Payment and Fair Exchange 77
3.4 FaCT Protocols Discussed in Subsequent Chapters 78
3.5 Brief Evaluation of the Existing FaCT Protocols 81
3.6 The Design Framework of the MW Protocol 82
3.7 Performance of the MW Protocol . 88

4.1 The Design Framework of the PS Protocol 92
4.2 The Design Framework of the IEH Protocols 97
4.3 The Design Framework of the Semi-Fair Protocol 110
4.4 Summary of the Security Analysis . 117
4.5 Efficiency Comparisons between Protocols without Trusted Third Parties . 119

5.1 The Design Framework of the LYTC Protocol 122
5.2 The Design Framework of the WP Protocol 128
5.3 The Design Framework of the ASSY Protocol 132
5.4 Summary of the Security Analysis . 139
5.5 Efficiency Comparisons between Protocols with online Trusted Third Parties 141

6.1 The Design Framework of the KTIG Protocol 145
6.2 The Design Framework of the CE Protocol 154
6.3 Summary of the Security Analysis . 161
6.4 Efficiency Comparisons between Protocols with offline Trusted Third Parties 163

7.1 The Design Framework of the FCS Protocol 167
7.2 The Design Framework of the DAA Protocol 178
7.3 The Design Framework of the PCA Protocol 184
7.4 Summary of the Security Analysis . 189
7.5 Efficiency Comparisons between Protocols with Trusted Hardware 191

8.1 The Design Framework of the FE Protocol 202
8.2 Efficiency Comparisons between LYTC Protocol and FE Protocol 210

9.1 Security Analysis of the FaCT protocols in the Four Categories 213

13

LIST OF TABLES

9.2 Performance of the FaCT Protocols in the Four Categories 214

14

Chapter 1

Introduction

Contents

1.1 Motivation . 15

1.2 Contributions . 17

1.3 Organisation of Thesis . 18

This chapter provides the motivation, contributions and structure of the thesis.

1.1 Motivation

The growth of the Internet and the continual advancement in computing power and

size of storage have made mass distribution of digital content such as digital music,

photos and videos possible. It is now common for a client to view, purchase or

share digital content on the Internet (e.g. YouTube [88], Apple iTune Store [68]) or

through portable entertainment devices such as an iPhone. While these allow more

convenient access to digital content in comparison to physical counterparts, they

cause one major concern: illegal distribution of copyrighted content.

The application scenario that we are interested in is how to address this concern by

deterring a client from illegally distributing copies of content. The main solution

that we consider in this thesis is to allow the distributor to trace the owner of

illegal copies found on a network. The content tracing application deploys digital

watermarking schemes (also known as fingerprinting schemes) [14, 77, 132]. Briefly,

a digital watermarking scheme is a scheme that embeds a unique string (known as a

watermark) into content without damaging the quality of this content, and in such

15

1.1 Motivation

a way that it is hard for unauthorised parties to remove this watermark from the

content. At a later stage the watermark can be detected, for example, to reveal the

identity of the client that bought the content.

Hence in a content tracing application, a watermark carrying the identity of the

client is embedded into content before it is given to the client. When an illegal copy

is found, a content distributor can then detect the embedded watermark in order to

identify the client who distributed this illegal copy. However, there are two issues

that arise from this approach due to the distributor being in control of generating

and embedding the client watermark [104, 115].

1. An innocent client, instead of the real perpetrator, may be falsely accused of

illegally distributing copies of content. This is possible as the distributor (or

a disgruntled employee working for the distributor) may frame an innocent

client by embedding the client watermark into content and distributing copies

of this content.

2. A dishonest client can claim that illegal copies of content distributed by him

are actually distributed by the distributor, since the distributor owns the wa-

termark of the client.

This creates a deadlock situation where a distributor is not able to prove to a third

party that the dishonest client has illegally distributed content, while at the same

time it is also possible that an innocent client is being framed by an unscrupulous

distributor.

Many protocols [85, 94, 102, 104, 105, 115] have been proposed to alleviate this

deadlock situation using digital watermarking schemes and cryptographic building

blocks. These protocols, which we term fair content tracing (FaCT) protocols, pro-

vide content tracing to the distributor in such a way that the tracing is fair to both

the distributor and the client. In other words, while it is possible for the distributor

to trace the identity of a client from a watermarked content, the distributor is not

able to frame a client. At the same time, a dishonest client who illegally distributes

a copy of some content cannot claim otherwise.

Various FaCT protocols have been proposed without an appropriate framework,

which makes them difficult to analyse. More importantly, the full solution space

16

1.2 Contributions

of such protocols has not yet been explored, hence it is not clear whether new

and improved protocols can be constructed based on alternative approaches. In

this thesis, our focus is to examine and analyse FaCT protocols, and to explore

alternative and better approaches to constructing them.

1.2 Contributions

This thesis examines FaCT protocols and proposes new approaches to constructing

them. The contributions of the thesis are as follows:

• A design and analysis framework is proposed to provide a firm foundation

for constructing and analysing FaCT protocols. The framework is used to avoid

the often ambiguous and ad-hoc design approaches of some existing protocols.

It is also used to consolidate at the conceptual level the many different ways

of building FaCT protocols. It defines threats, security requirements, trust

assumptions and the various environments in which these protocols are based.

As a result, we are able to point out design flaws in recent proposals and explore

new approaches that have not been proposed before. The framework also

includes the classification of existing FaCT protocols into four main categories.

This work was partially published in [109].

• Analysis of existing protocols and new approaches to constructing

FaCT protocols.

Firstly, we look at protocols without trusted third parties. Existing protocols

in this category normally have high communication and computation costs.

Attempts were made by some recent proposals to reduce these costs, but we

demonstrate that these are flawed. We then propose a possible approach that

reduces these costs by relaxing the trust assumption on the distributor. In

other words, by trusting the distributor a little bit more than the client, it is

possible to construct an efficient protocol in this category. Our study suggests

that it is a challenging task to design FaCT protocols without trusted third

parties. Part of this work was published in [111, 113].

Secondly, we examine protocols with online trusted third parties. We investigate

three existing protocols and discuss security issues concerning them. This work

was partially published in [112].

17

1.3 Organisation of Thesis

Thirdly, we examine protocols with offline trusted third parties. We propose

a new approach that deploys a recently proposed symmetric cryptographic

building block to reduce the reliance on the trusted third party. Our new

approach is computationally efficient compared to existing FaCT protocols,

mainly because existing FaCT protocols use asymmetric cryptographic build-

ing blocks, which are relatively computationally intensive in comparison. Part

of this work was published in [110].

Fourthly, we examine protocols with trusted hardware. We propose two proto-

cols based on trusted computing, using the now standardised Trusted Platform

Module (TPM). Such a design has not been proposed before, and it is a more

practical solution than existing proposals that are based only on an abstract

definition of trusted hardware. This work was jointly conducted with Adrian

Leung and was partially published in [86].

• Finally, we explore FaCT protocols involving payment. We examine the issues

when payment is included in FaCT protocols in the four categories. We further

propose a FaCT protocol that includes payment and provides the additional

property of fair exchange.

1.3 Organisation of Thesis

In the following we outline the structure of the thesis:

Fair Content Tracing: In Chapter 2, we introduce content distribution, fair

content tracing and fair content tracing protocols. We also describe in detail

the underlying building blocks required to construct these protocols.

A Framework: In Chapter 3, we propose a framework for FaCT protocols. We

further classify existing protocols into categories and illustrate as an example

one of the earliest FaCT protocols known as the Memon-Wong buyer-seller

watermarking protocol.

Protocols without Trusted Third Parties: In Chapter 4, we study and analyse

FaCT protocols that do not require a trusted third party during content dis-

tribution between the distributor and the client. We describe the benefits and

issues of the existing protocols in this category. We also show how two recently

18

1.3 Organisation of Thesis

proposed protocols contain flaws. Finally, we describe a possible approach to

constructing an efficient protocol by reconsidering the trust assumption on the

distributor.

Protocols with Online Trusted Third Parties: In Chapter 5, we examine

FaCT protocols with online trusted third parties. We illustrate some existing

protocols and discuss the benefits and security issues of these protocols.

Protocols with Offline Trusted Third Parties: In Chapter 6, we examine

FaCT protocols with offline trusted third parties. We describe an existing

protocol and then propose a new one based on Chameleon encryption. We

demonstrate that the new protocol has better computational performance,

while placing less reliance on the trusted third party.

Protocols with Trusted Hardware: In Chapter 7, we examine FaCT protocols

with trusted hardware. We begin by looking at existing proposals that are

constructed based on an abstraction of trusted hardware. We then construct

protocols based on a Trusted Platform Module (TPM).

Protocols with Payment and Fair Exchange: In Chapter 8, we study the

addition of payment and how it motivates the requirement for fair exchange.

We describe a protocol with a fair exchange mechanism and analyse its security

and performance.

Conclusions: In Chapter 9, we summarise our discussions by reinforcing the issues

that motivate our research and our contributions toward solving them. We also

suggest possible directions for future research on FaCT protocols.

19

Chapter 2

Fair Content Tracing Protocols

Contents

2.1 Motivation . 20

2.1.1 Content Distribution . 21

2.1.2 Content Tracing . 22

2.1.3 Fair Content Tracing . 23

2.2 Existing FaCT Protocols 25

2.3 Building Blocks . 26

2.3.1 Digital Watermarking Schemes 26

2.3.2 Encryption Schemes . 33

2.3.3 Watermarking in the Encrypted Domain 39

2.3.4 Cryptographic Hash Functions 41

2.3.5 Digital Signature Schemes 41

2.3.6 Zero-Knowledge Proofs . 43

2.4 Summary . 45

This chapter introduces fair content tracing protocols. We define fair content tracing,

why it is important and the issues that it addresses. This in turn motivates the

construction of fair content tracing protocols. We provide a definition and brief

review of these protocols and survey in detail the fundamental building blocks that

are required to construct these protocols.

2.1 Motivation

In this section we discuss content distribution, the issues of illegal distribution and

one of the techniques proposed to address this issue. This technique is known as

20

2.1 Motivation

content tracing. Next we reason why content tracing is not sufficient, resulting in

the proposal of fair content tracing protocols.

2.1.1 Content Distribution

Digital content (or content) is multimedia files in the form of digital images, digital

audio (e.g. songs) or digital video (e.g. movies). Some common examples are images

in JPEG format [59], audio in MP3 format [60] and video in H.264/MPEG-4 AVC

(Advanced Video Coding) format [133]. Distribution of content, such as sharing,

viewing and purchasing of songs and movies, has become very common and can

be performed with ease. This is especially true given today’s convenient and fast

access to widely available computer networks such as the Internet. Access to digital

content is also getting more and more pervasive, as can be seen from the various

computing devices that are now being used for this purpose. These include laptop

computers, mobile phones and personal digital assistants (PDAs).

In conjunction with these developments, various models for the distribution of digital

content have been developed. We briefly mention three common models:

• Content Broadcast. The first model is broadcast of content. In this model, a

broadcaster broadcasts one copy of content to many clients. In order to gain ac-

cess to this content, clients need to subscribe to the content broadcast services

provided by the broadcaster. Examples of these are Pay-TV systems [128],

and emerging IPTV systems.

• Buyer-Seller Content Purchase. The second model relates to buying and sell-

ing of content through online uploading/downloading facilities. One method

is for a client to purchase content from the distributor. Examples are the ser-

vices provided by iTunes Store [68] and Amazon Unbox video downloads [67].

In this case the clients subscribe to the content distribution service by regis-

tering on the websites of these distributors. The clients then purchase content

by downloading from the provided downloading facilities. It is also possible

that there is no purchasing involved. The clients need only to register on the

websites provided by the distributor and proceed to download content. One

such example is BBC iPlayer [7]. The second method is for a distributor to

send content directly to a client when a client requests it. In this case no

21

2.1 Motivation

subscription is required. The client provides the distributor with all necessary

information (e.g. payment) together with the content request. This is com-

monly known as a “pay-per-view” service. An example is the service provided

by CinemaNow [69]. As a final method, it is also possible for a content author

to license content to many distributors. For example, a content author releases

authorised copies of content to movie theatres for public screening.

• Peer-to-Peer. The last example is the peer-to-peer model. In contrast to the

above models, this model does not have a central distributor, but many clients

that also act as distributors. These are currently among the most popular

models for file sharing. One example is Gnutella [52]. A framework has been

proposed concerning how content distribution can be performed in a trusted

and legal peer-to-peer environment [121], but there are concerns about the use

of peer-to-peer networks for mass distribution of copyrighted content without

the consent of the copyright holders [11].

2.1.2 Content Tracing

We have just discussed how content can be easily and efficiently distributed based

on various distribution models. A significant problem is that in many of these

models a client, after obtaining songs or movies, can easily make many copies and

mass distribute them without the consent of the distributor. Therefore, methods

have been proposed to alleviate this concern. One of these methods is content

tracing. Other methods include Digital Rights Management (DRM) system such as

the Window Media DRM [27].

In general, content tracing is a technique that gives a distributor the capability

to trace the identity of a client based on a copy of content. To achieve this, the

distributor generates and places a unique string (commonly known as a watermark)

into content to create a marked copy. This marked copy is given to the client.

The distributor stores the watermark as the client identifier, together with other

information about the client. When marked content is found, the distributor can

trace the identity of the client based on the detected watermark. The process of

embedding and detecting the watermark is realised by schemes known as digital

watermarking schemes, which we will discuss in Section 2.3.1. As an example, a

practical content tracing system developed by Philips using digital watermarking

22

2.1 Motivation

schemes has been deployed. It is used by Technicolor to distribute and trace screener

copies of content (or pre-release movies) that are meant for voting members of the

Oscar award [29]. Such tracing techniques can be deployed in all three models

discussed in Section 2.1.1 to trace distribution of content. More importantly, letting

clients know that there is a tracing mechanism in place may help to deter them from

making copies and illegally distributing these copies.

2.1.3 Fair Content Tracing

We have just discussed how content tracing can deter a client from illegally dis-

tributing copies of content. However, Qiao and Nahrstedt [115], and Pfitzmann

and Schunter [104] independently pointed out concerns with such an approach. In

content tracing, the distributor generates and embeds a watermark into content in

order to allow him to trace marked copies of content and identify the client that

owns them. In this situation, the distributor has in his possession the original con-

tent, the watermark and the marked copy. It is clear that a client has no choice but

to trust the distributor to act honestly. This is because the distributor can embed

a watermark into any content, distribute copies of this content, and frame a client

for illegally distributing content. Conversely, due to this framing possibility, the

distributor is able to trace a client who redistributes copies of content but is not

able to prove this fact to a third party. This is because a dishonest client can claim

that illegal copies are distributed by the distributor.

To further clarify the above issues, let us again examine the buyer-seller content

purchase model illustrated in Section 2.1.1. When content tracing is in place, an

innocent client may be wrongly implicated if the client’s marked copy is leaked by

the distributor or by other parties working/sharing resources with this distributor.

It is also possible that, due to operational errors, a marked copy supposedly meant

for client C1 is accidentally given to another client C2. Similarly, such incidents

may also happen in the content broadcast and peer-to-peer models. Conversely, if a

dishonest client redistributes copies of content, it will be difficult for the distributor

to provide evidence to prove that the client has redistributed these copies. A client

can claim that the leaked marked copy is due to errors on the side of the distributor,

or that the distributor is simply trying to frame him (which may be true).

In essence, the issues that render content tracing to be insufficient can be summarised

23

2.1 Motivation

as follows:

1. The client is worried that they may be falsely accused of illegal distribution

since the distributor has all the power to generate and embed a watermark into

content. Meanwhile, a dishonest client who distributes copies illegally can deny

doing so due to the fact that it is easy for the distributor to distribute these

copies using the client’s watermark.

2. The distributor is not able to prove to a third party that the client has illegally

distributed copies of content.

Therefore, in addition to content tracing, techniques must be provided to address

the above issues. In other words, content tracing must be performed in a way that

is fair and does not discriminate either the client or the distributor. We term such

techniques as fair content tracing. More formally, we say that fair content tracing is

a content tracing technique that traces content in a fair manner for the distributor

and the client by:

• preventing an unscrupulous distributor from being able to frame an innocent

client,

• allowing the distributor to prove the illegal action of a dishonest client.

When Privacy Is a Concern. Additionally, one issue put forward by Pfitzmann

and Waidner [105] is that clients should not need to reveal their identities just

because a distributor wishes to be able to trace some dishonest clients who illegally

distributed copies of content. The revealing of the identity should only be allowed

for those clients who have misused their rights on the content that they owned. If

this is the case then fair content tracing includes the additional goal of protecting

the privacy of clients.

When Payment Is Involved. Similarly, when the distribution of content involves

buying and selling, then the distributor will want to receive correct payment, while

the client will want to receive correct content. If this is the case then fair content

tracing includes the additional goal of ensuring that the distributor and the client

24

2.2 Existing FaCT Protocols

trade fairly. We remark that this issue has not been discussed before and we will

examine it in more detail in Chapter 8.

Fair Content Tracing (FaCT) Protocols. Fair content tracing is provided by

what we call fair content tracing (FaCT) protocols. A FaCT protocol is an interactive

protocol that provides content distribution between a distributor and a client, in

which the client who receives content can be traced in a fair manner if copies of

this content are found to be illegally distributed. By fair we mean that a FaCT

protocol fulfills the goals of content tracing and fair content tracing as discussed in

Section 2.1.2 and Section 2.1.3. In the next chapter we re-examine the objectives

of FaCT protocols by defining the threats faced by FaCT protocols and security

requirements based on these threat scenarios.

2.2 Existing FaCT Protocols

Two variants of FaCT protocols have been proposed. These are buyer-seller water-

marking (BSW) protocols and asymmetric fingerprinting (AF) protocols.

BSW protocols were first proposed by Qiao and Nahrstedt [115] and later improved

by Memon and Wong [94]. More recently, Ju et al. [74] presented a protocol that also

protects client privacy. Several BSW protocol variants have since been proposed,

including [25, 26, 33, 34, 50, 54, 65, 81, 85, 123]. In most of these protocols:

• Digital watermarking schemes are deployed for content tracing.

• A special trusted third party is introduced to generate client watermarks,

instead of letting the distributor generate them.

• Asymmetric homomorphic encryption schemes such as Paillier [99] are de-

ployed, together with digital watermarking schemes such as the spread spec-

trum watermarking scheme [28], in such a way that the party (i.e. the dis-

tributor) who embeds a watermark into content has no idea what the wa-

termark is. This technique is termed watermarking in the encrypted do-

main [41, 44, 108, 120]. We will examine these building blocks in Section 2.3.

• Digital signature schemes such as RSA-PSS [83] are used to ensure that a

dishonest client cannot repudiate the fact that copies of content were illegally

25

2.3 Building Blocks

distributed.

AF protocols were first proposed by Pfitzmann and Schunter in [104]. This idea was

extended to include client privacy in [105]. In most of these protocols, watermarking

in the encrypted domain also plays a key role and:

• Digital watermarking schemes are deployed for content tracing.

• Instead of introducing a trusted third party to generate watermarks for clients,

the client is responsible for generating their own watermark, while the distrib-

utor is responsible for embedding this watermark into content. Homomorphic

bit commitment schemes [17] are deployed in conjunction with zero-knowledge

proof systems [57, 47] to prevent the client from manipulating the watermark

generation process. The client, after generating the watermark, must prove in

zero-knowledge to the distributor that the generated watermark is well-formed.

• Similar to BSW protocols, digital signature schemes are deployed to prevent

a dishonest client from denying the act of illegal content distribution.

Other variants were later proposed in [19, 23, 40, 78, 80, 102, 103, 118].

We will examine in detail the properties of these protocols by categorising them based

on a framework in Chapter 3 and analysing different protocols in the subsequent

chapters. In the following section, we define and describe the building blocks that

are used to construct FaCT protocols.

2.3 Building Blocks

We now discuss some building blocks required to construct FaCT protocols.

2.3.1 Digital Watermarking Schemes

We introduce digital watermarking and present two well-established schemes known

as Spread Spectrum (SS) [28] and Quantization Index Modulation (QIM) [21] water-

marking schemes.

26

2.3 Building Blocks

Digital Watermarking. Watermarking can be traced back to 1292 in the era

of paper making in Italy. The main idea was to embed identities of paper mills,

and identities of the artists that refined these papers, as translucent images on the

papers [75]. The buyers looked at these watermarks to differentiate and compare

the quality of the produce. In the 17th and 18th centuries, the publishers of loga-

rithm tables used the same concept by deliberately introducing errors in the least

significant bits of the numbers [75].

Digital watermarking is in many ways similar to the traditional watermarking tech-

niques illustrated above. However, for most computer applications, a digital wa-

termark is normally imperceptible after it is embedded into content. A digital

watermark can be thought of a message that, when embedded into content, can

later be extracted in order to identify a client that owns this content. It can also

be used for applications such as copy prevention, ownership identification and data

authentication [29, 30, 62, 114].

Digital Watermarking Schemes. Many digital watermarking schemes [21, 28,

29, 62] have been proposed. A digital watermarking scheme consists of three al-

gorithms: a key generation algorithm that generates a secret key, an embedding

algorithm that uses the key to embed a watermark into content and a detection

algorithm that detects the watermark from a marked copy of content. In addition,

a watermark generation algorithm is also needed to generate the watermark. Both

the key and the watermark must be kept secret.

A digital watermarking scheme can be classified as either blind or non-blind (also

known as blind or informed in [29]) depending on the inputs to the detection al-

gorithm [2, 75]. A blind watermarking scheme means that the detection algorithm

detects the embedded watermark from a marked copy of content based only on this

marked copy. A non-blind watermarking scheme means that the detection algo-

rithm detects the embedded watermark from a marked copy of content based on

the marked copy, and also the original content or other information related to the

original content.

A digital watermarking scheme can further be classified as symmetric or asymmet-

ric [2]. A symmetric watermarking scheme uses identical secret keys for embedding

and detection, whereas an asymmetric watermarking scheme has a key pair: an em-

27

2.3 Building Blocks

bedding key for watermark embedding and a detection key for watermark detection.

In this thesis we assume that the digital watermarking schemes being deployed are

non-blind and symmetric. The reason for this is that in FaCT protocols, watermark

embedding and detection are both performed by the distributor (or a trusted third

party), who is in possession of the key and the original content. Hence we can

use a symmetric scheme since there is no key distribution issue, and use a non-

blind scheme since the original content is available for watermark detection. This is

beneficial as it is known that watermark detection is more effective given the presence

of the original content [28, 87]. Formally, we define a non-blind and symmetric

watermarking scheme in Definition 2.1, based on the definition in [2].

Definition 2.1 ([2]) A non-blind and symmetric digital watermarking scheme consists
of three polynomial-time algorithms:

• A key generation algorithm, Gw. On input of the security parameter pw, Gw outputs
a key wmk.

• A watermark embedding algorithm [·, ·]EMB(·)
, where given watermark W and con-

tent X, the algorithm outputs a marked content X ′:

X ′ ← [X,W]EMBwmk
.

• A watermark detection algorithm [·, ·, ·]DET (·)
, where given a marked content X ′,

watermark W , and the original content X, the algorithm outputs either true or
false:

{true, false} ← [X ′,W,X]DETwmk
.

We require that, for all X, W , and wmk ∈ {Gw}:

X ′ ← [X,W]EMBwmk
=⇒ [X ′,X]SIM = true,

where [X ′,X]SIM is a function that decides whether X ′ is similar to X, and for correct-
ness,

X ′ ← [X,W]EMBwmk
=⇒ [X ′,W,X]DETwmk

= true.

In Definition 2.1, the function [·, ·]SIM is required to ensure that embedding of the

watermark into content does not affect the quality of the content. In other words, the

marked copy of content should be perceptibly similar to that of the original content.

Cox et al. provide a good overview on designing such a function in Chapter 8 of [29].

Two security properties of a digital watermarking scheme are crucial for the effec-

tiveness of content tracing. These are:

28

2.3 Building Blocks

• Robustness. A watermarking scheme is said to be robust if it can detect the

embedded watermark even when the marked content is modified (either due to

common signal processing, such as compression, or intentional change), as long

as the marked content is still perceptibly similar to the original content [2].

This also means that when a watermark is successfully removed, the modified

content is of such low quality that it is of no value anymore.

• Collusion resistance. A watermarking scheme is said to have collusion resis-

tance if it is robust to watermark removal based on comparing many unique

copies of the marked content with distinct watermarks owned by the clients [28,

87, 104].

In this thesis we assume that the digital watermarking schemes used in FaCT pro-

tocols provide the above security properties. We describe two well-established wa-

termarking schemes in the following.

Spread Spectrum Watermarking Schemes. Spread Spectrum (SS) watermark-

ing schemes were first proposed by Cox et al. [28]. In their proposal, watermarking

is modeled as a communication channel such as a radio transmission where signal

jamming is possible. The watermark is considered as the signal to be transmitted

through the host signal (which is the original content in our discussion), while the

noise introduced is the jamming signal. If the watermark is carried in a relatively

narrow frequency band in the host signal, a jammer can allocate all the power to

this band of frequencies to remove the watermark.

The idea is to “spread” the watermark signal throughout the host signal so that

the jammer has to spread its power over a wide range of frequencies, which greatly

reduces the effect on the watermark signals, since only a small fraction of that power

reaches the watermark signal. In other words, the watermark can be a sequence of

small real numbers and these are added to many locations in the content in such a

way that it is difficult for an attacker to remove them.

The SS scheme proposed by Cox et al. [28] remains one of the most well-established

techniques. The watermark is embedded in the most significant parts of a content,

while introducing only minimum distortion. This was different to most of the pre-

vious techniques that were based on embedding in the least significant parts of the

29

2.3 Building Blocks

content. A basic SS scheme of Cox et al. [28] is presented in Figure 2.1.

1. Let content X = (x1, . . . , xn) and watermark W = (w1, . . . , wn), where both xi,
wi ∈ R, and n is the number of the most significant elements in the content to
be watermarked. For example, n = 1000 and (x1, . . . , x1000) are the one thou-
sand most significant DCT (Discrete Cosine Transform) coefficients of a digital
image [28].

2. The embedding algorithm is:

X ′ ← [X,W]EMBwmk
⇐⇒ x′

i = xi + ρwi 1 ≤ i ≤ n, (2.1)

where ρ is a real number, which is determined by the robustness and content
quality requirements of the watermarking scheme. Higher values of ρ result in
more robustness but cause more distortion to the content.

3. The detection algorithm {true, false} ← [X ′,W,X]DETwmk
consists of two steps:

• Watermark Extraction. This is performed by subtracting the original content
X from the marked copy X ′:

ρw′
i = x′

i − xi 1 ≤ i ≤ n. (2.2)

• Watermark Detection. After the watermark W ′ is extracted, the correlation
between this watermark W ′ and the original watermark W is computed:

W ′W√
W ′W ′

> t = {true, false}, (2.3)

where t is a predetermined threshold. If the result is true, then the water-
mark is present in the marked copy of content.

Figure 2.1: Cox et al.’s Spread Spectrum Watermarking Scheme

It is possible to construct an alternative embedding algorithm for the scheme shown

in Figure 2.1 that has the following form:

X ′ ← [X, W]EMBwmk
⇐⇒ x′

i = xi(1 + ρwi) 1 ≤ i ≤ n. (2.4)

This alternative embedding algorithm is useful when the value of the content ele-

ments xi vary widely. For example, if xi = 1000 then adding 1 may not affect the

content in the original embedding algorithm (2.1), but if xi = 1 then adding 1 will

totally distort the original value [28]. In this situation the alternative algorithm

should be used. It is also worth noting that we denote the extracted watermark as

W ′ in Figure 2.1 since it is possible that the marked copy of content was modified

and the watermark extracted is not the exact copy of the embedded watermark W .

We have also omitted details of the key generation algorithm. This is because this

30

2.3 Building Blocks

scheme can be keyless (in this case the secret information is the watermark W).

For example, based on equations (2.1) and (2.4), the SS scheme works by adding the

watermark into many elements of content. Without the knowledge of the watermark

and the original content, an attacker’s best strategy is to try to guess each watermark

element, or use signal processing techniques to remove the watermark. It is assumed

that the attacker knows the watermarking schemes and all other parameters in use.

It has been known that for SS schemes, guessing the watermark is hard. Experiments

have shown that such schemes are robust against signal processing [28, 87, 125].

Guessing the watermark may be made more difficult if the locations of the embedded

watermark elements are kept secret. In this case the key wmk is the embedding

locations.

Quantization Index Modulation (QIM) Watermarking Schemes. QIM wa-

termarking schemes were first proposed by Chen and Wornell [21], based on the idea

of quantisation, which we now describe.

In signal processing, before an analog signal is converted to a digital signal, each

analog sample is assigned one of b values. For example, given b = 4 and an analog

signal with continuous input from 0 to 4, the analog-to-digital conversion has the

following input and output (Table 2.1).

Table 2.1: Quantisation: A Simple Example
Continuous Values Inputs Discrete Values Outputs

0.0000 ≤ x < 1.0000 x = 0
1.0000 ≤ x < 2.0000 x = 1
2.0000 ≤ x < 3.0000 x = 2
3.0000 ≤ x ≤ 4.0000 x = 3

This process is called quantisation. Briefly, it takes a large set of values and maps

these values to a smaller set. This process results in a loss of information, and

such losses are termed quantisation errors. The values 0, 1, 2 and 3 represents the

quantisation levels, and the interval between two levels is the quantisation step size.

For example, the quantisation step size is 1 for the above example. The basic concept

of QIM watermarking is based on the quantisation technique described above. A

QIM watermarking scheme is shown in Figure 2.2. This example follows the simplest

case of embedding one bit in a real-valued sample given in [96].

31

2.3 Building Blocks

1. Let content X = (x1, . . . , xn) and watermark W = (w1, . . . , wn), where xi ∈ R

and wi ∈ {0, 1}.
2. Let the key wmk = d, where d is the quantisation step size.

3. Let Q (u) = d ⌊u/d⌋, u0 = xi + d/4, u1 = xi − d/4 and

Q0 (u0) = Q (u0)− d/4 ;
Q1 (u1) = Q (u1) + d/4

1 ≤ i ≤ n. (2.5)

4. The embedding algorithm X ′ ← [X,W]EMBwmk
is defined as

x′
i =

{
Q0 (u0) if wi = 0 ;
Q1 (u1) if wi = 1

1 ≤ i ≤ n. (2.6)

5. The detection algorithm {true, false} ← [X ′,W,X]DETwmk
consists of two steps:

• Watermark Extraction. This is performed as follows:

w′
i = 0 if |x′

i −Q0 (u0)| < |x′
i −Q1 (u1)| ,

w′
i = 1 if |x′

i −Q1 (u1)| < |x′
i −Q0 (u0)| 1 ≤ i ≤ n, (2.7)

where |.| denotes absolute value.

• Watermark Comparison. The extracted watermark W ′ is compared with
the original watermark W . If W ′ = W then the output is true. It is false
otherwise.

Figure 2.2: Chen and Wornell’s Scalar-QIM Algorithm [96] [21]

We provide a hypothetical example of the working of the scheme shown in Figure 2.2.

With d = 4, xi = 50, we have:

u0 = 50 + 1 = 51,
u1 = 50− 1 = 49,
Q0 (u0) = 4 ⌊51/4⌋ − 1 = 47 if wi = 0,
Q1 (u1) = 4 ⌊49/4⌋+ 1 = 49 if wi = 1.

So if we are to embed wi = 0, then xi = 50 is replaced by xi = 47. Similarly,

if we are to embed wi = 1, then xi = 50 is replaced by the value 49. To extract

the watermark, let wi = 0, we have x′
i = 47 and thus the detected value can be

calculated as:

w′
i = 0 since |47− 47| < |47− 49|

w′
i 6= 1 since |47− 49| 6< |47− 47| .

The security of the scheme depends on keeping both d and W secret. This simple

scheme may cause visible distortion if the noise added to the marked sample exceeds

32

2.3 Building Blocks

d/4. Hence an improved scheme, named distortion-compensated scalar QIM, was

also proposed. The embedding algorithm for this improved scheme is:

xi
′ =

{
Q0 (αu0) + (1− α) xi if w = 0 ;
Q1 (αu1) + (1− α) xi if w = 1 ,

1 ≤ i ≤ n, (2.8)

where α ∈ [0, 1]. It can be observed that (2.8) is identical to (2.6) when α = 1. In

general, adjusting the value of α allows one to adjust the distortion introduced to

the content by the watermark. Details of the QIM schemes can be found in [21].

In summary, the SS and QIM watermarking schemes can be deployed for content

tracing, and they currently serve as the main watermarking schemes used in most

of the existing FaCT protocols, such as the protocols in [80, 85, 94].

2.3.2 Encryption Schemes

An encryption scheme is a method that enables two parties to communicate with one

another through an insecure communication channel without a third party knowing

what the message being transmitted is [124]. It consists of three algorithms. These

are the key generation algorithm that generates key(s), an encryption algorithm that

encrypts a message (a plaintext) to produce an encrypted message (a ciphertext), and

a decryption algorithm that decrypts the ciphertext to recover the plaintext. Anyone

who gets hold of the ciphertext is not able to determine what the plaintext is if he

does not have possession of the decryption key. Whether an identical key is used for

encryption and decryption, or different keys are used, depends on the type of the

encryption scheme.

Symmetric Encryption Schemes. In these schemes, two parties who wish to

communicate securely with one another share an identical secret key for encryption

and decryption of messages. Prior to sending a secret message, both parties must

find a secure way to agree on and obtain the secret key, such as through courier or

use of a trusted third party. After that, the sender uses the encryption algorithm

to encrypt the plaintext using this secret key and sends the resulting ciphertext to

the receiver. The receiver uses the identical secret key to decrypt the ciphertext

into plaintext. Symmetric encryption schemes can further be categorised into block

ciphers and stream ciphers. The main difference between these two categories is that

block ciphers encrypt the plaintext in blocks of bits, while stream ciphers encrypt the

33

2.3 Building Blocks

plaintext bit-by-bit. One example of a block cipher is AES [72], and an example of

a stream cipher is SNOW [42]. In this thesis, when we use a symmetric encryption

scheme we will normally imply use of a block cipher. We formalise a symmetric

encryption scheme in Definition 2.2.

Definition 2.2 ([124]) A symmetric encryption scheme is a triple (Gh, [·]E(·)
, [·]D(·)

)
of polynomial-time algorithms:

• On input 1k, where k is the security parameter, the key generation algorithm Gh

outputs a secret key sk.

• On input of content X and by using the secret key sk, encryption is performed as
Y ← [X]Esk

, where Y is the encrypted content.

• On input of encrypted content Y and by using the secret key sk, decryption of an
encrypted content is performed as X ← [Y]Dsk

.

For correctness, we require that for all Y ∈ {[X]Esk
}:

[Y]Dsk
= X.

Asymmetric Encryption Schemes. In an asymmetric encryption scheme, two

keys are generated. One is the public key for encryption, and the other is the private

key for decryption. A public key is not secret and can be distributed to anyone who

wishes to encrypt messages intended for the owner of this public key. For exam-

ple, if a distributor wishes to encrypt content meant for the client, the distributor

encrypts this content with the client’s public key. When the client receives the en-

crypted content, the client decrypts it by using his private key. This private key is

kept secret by the client. While asymmetric encryption schemes avoid the need to

distribute identical keys to sender and receiver, they are generally more computation-

ally expensive than symmetric schemes. One example of a well-known asymmetric

encryption scheme is RSA [117]. We formalise an asymmetric encryption scheme in

Definition 2.3.

Homomorphic Encryption Schemes. A homomorphic encryption scheme is

an encryption scheme having a special property known as a privacy homomorphism,

which we formalise in Definition 2.4. Most of the homomorphic encryption schemes

proposed to date are asymmetric. Very few symmetric schemes have been proposed

and flaws have been discovered in most of them [48]. Examples of asymmetric ho-

34

2.3 Building Blocks

Definition 2.3 ([124]) An asymmetric encryption scheme is a triple (Gh, [·]PE(·)
,

[·]PD(·)
) of polynomial-time algorithms:

• On input 1k, where k is the security parameter, the key generation algorithm Gh

outputs a key pair (pek, pdk).

• On input of content X and by using the public encryption key pek, encryption is
performed as Y ← [X]PEpek

, where Y is the encrypted content.

• On input of encrypted content Y and by using the private decryption key pdk,
decryption of an encrypted content is performed as X ← [Y]PDpdk

.

For correctness, we require that for all Y ∈ {[X]PEpek
}:

[Y]PDpdk
= X.

momorphic schemes are the original RSA [117], Goldwasser-Micali [56], Paillier [99]

and Okamoto-Uchiyama [97].

Definition 2.4 ([48, 124]) An asymmetric homomorphic encryption scheme is a triple
(Gh, [·]HE(·)

, [·]HD(·)
) of polynomial-time algorithms:

• On input 1k, where k is the security parameter, the key generation algorithm Gh

outputs a key pair (hek, hdk).

• On input of content X and by using the public encryption key hek, encryption is
performed as Y ← [X]HEhek

, where Y is the encrypted content.

• On input of encrypted content Y and by using the private decryption key hdk, the
decryption of an encrypted content is performed as X ← [Y]HDhdk

.

For correctness, we require that for all Y ∈ {[X]HEhek
}:

[Y]HDhdk
= X.

Privacy homomorphism. We further require that for content X1 and content X2,

[X1]HEhek
◦ [X2]HEhek

= [X1 ◦X2]HEhek
,

where ◦ denotes either addition or multiplication depending on the underlying asymmetric
homomorphic encryption scheme.

The standard notion of security for an encryption scheme is known as indistinguisha-

bility [56]. This means that an efficient (polynomial-time) attacker is not able to

learn any bit about the plaintext from the ciphertext, except the length of the plain-

text. An encryption scheme that fulfills this requirement is known as a semantically

secure scheme. The Paillier encryption scheme [99] is one such scheme.

35

2.3 Building Blocks

In this thesis we assume that the encryption schemes used in a FaCT protocol are at

least semantically secure. In the following we provide three examples of asymmetric

homomorphic encryption schemes that have been used in existing FaCT protocols.

RSA Encryption Scheme. The RSA encryption scheme was proposed by Rivest,

Shamir and Addleman [117] and is one of the most well-known schemes. We de-

scribe the RSA encryption scheme and its homomorphic property in Figure 2.3. In

this scheme, every time the same message is given, the encryption algorithm (2.9)

will output the same ciphertext. The RSA scheme is thus a deterministic scheme.

This deterministic nature means that the scheme is not semantically secure. Such

a characteristic is not desirable, especially when the plaintext space is small, for

example X ∈ {0, 1}. If this is the case then there are only two possible outputs of

ciphertexts! Hence, if the original RSA encryption scheme is used, an attacker can

trivially guess the plaintext from the ciphertext when the plaintext space is small.

The RSA encryption scheme is used in many practical applications. The actual

implementation used is normally a variant known as RSA-OAEP [10, 82], which is

no longer homomorphic and thus cannot be used in a FaCT protocol to prevent

framing. Some of the earlier FaCT protocols, such as the protocol proposed in [94],

suggested the use of RSA for homomorphic encryption. These protocols are thus

exposed to the deterministic nature of the original RSA scheme, which in the context

of a FaCT protocol may not be desirable. In this case alternative homomorphic

encryption schemes should be used, such as the Goldwasser-Micali [56], Paillier [99],

El-Gamal [43] and Okamoto-Uchiyama [97] schemes. These encryption schemes

are probabilistic in the sense that every time an identical message is encrypted,

the resulting ciphertext is different with high probability. The basic idea is to use

random strings to randomise the encryption process, as discussed in the following

Goldwasser-Micali and Paillier encryption schemes.

Goldwasser-Micali Encryption Scheme. Goldwasser and Micali proposed the

first semantically secure encryption scheme in 1984 [56]. The Goldwasser-Micali

scheme achieves semantic security by randomising the encryption of the plaintext

with a random integer r1 (or r2), as shown in Figure 2.4. Thus a plaintext results

in different ciphertexts when it is encrypted using a different random integer r. It

is not difficult to observe that the scheme is inefficient in terms of the size of the

36

2.3 Building Blocks

1. Let m = pq where p and q are two large distinct primes.

2. Let φ(m) = (p− 1)(q − 1).

3. Choose a random integer a, where 1 < a < φ(m) and gcd(a, φ(m)) = 1, where gcd
denotes greatest common divisor.

4. Compute ab ≡ 1 (mod φ(m)) where 1 < b < φ(m).

5. The public encryption key hek is (m,a).

6. The private decryption key hdk is b.

7. Let messages X1,X2 and encrypted messages Y1, Y2, where X1,X2, Y1, Y2 ∈ Zm,
given Zm a group of integers modulo m.

8. Encryption of messages X1 (or X2) is:

Y1 ← [X1]HEhek
⇐⇒ Y1 = X1

a mod m. (2.9)

9. Decryption of encrypted messages Y1 (or Y2) is:

X1 ← [Y1]HDhdk
⇐⇒ X1 = Y1

b mod m. (2.10)

10. Homomorphic encryption is:

Y1 · Y2 = X1
a ·X2

a mod m = (X1 ·X2)
a mod m. (2.11)

In this case the homomorphic operator ◦ = · (as defined in Definition 2.4) is mod-
ular multiplication. This means RSA demonstrates a multiplicative homomorphic
property.

Figure 2.3: RSA Encryption Scheme with privacy homomorphism

ciphertext. As can be seen from the encryption operation, the original message is

one bit, but the resulting ciphertext is much larger, having the size of m, where

m = 768 or m = 1024 bits is currently the recommended bit-length for security

assurance of a small or large organisation [51]. However, the scheme can be made

more computationally efficient. As is mentioned in [124], if the two large distinct

primes are generated such that p ≡ 3 mod 4 and q ≡ 3 mod 4 (these are known as

Blum integers), then the integer g can be −1 (g = −1). In this case the computation

of gX , where X is the message, will not involve any exponentiation.

Paillier Homomorphic Encryption Scheme. This semantically secure encryp-

tion scheme was proposed by Paillier in 1999 [99]. We describe the scheme in Fig-

ure 2.5. The Paillier homomorphic encryption scheme has been used widely in digital

voting schemes [61] and more recently in the field of watermarking in the encrypted

37

2.3 Building Blocks

1. Similar to RSA, let m = pq where p and q are two large distinct primes.

2. Randomly choose an integer g ∈ Z
∗
m, where g is a quadratic non-residue modulo m,

and Z
∗
m a multiplicative group of integers modulo m. (An integer y is a quadratic

residue modulo m if there exists an integer z ∈ Z
∗
m such that y = z2 mod m.

A quadratic non-residue means otherwise.) In this case, we can find a quadratic
non-residue g if g satisfies

(
g

p

)
=

(
g

q

)
= −1,

where
(

g
p

)
= g(p−1)/2 mod p and

(
g
q

)
= g(q−1)/2 mod q.

3. The keys are: hek = (m, g) and hdk = (p, q).

4. Let messages X1,X2 ∈ {0, 1} and encrypted messages Y1, Y2 ∈ Z
∗
m.

5. Randomly choose an integer r1 (or r2) ∈ Z
∗
m.

6. Encryption of message X1 with r1 (or X2 with r2) is:

Y1 ← [X1]HEhek
⇐⇒ Y1 = gX1 · r2

1 mod m. (2.12)

7. Decryption of message Y1 (or Y2) is:

X1 ← [Y1]HDhdk
⇐⇒ X1 =





0 if Y1 =
(

Y1

p

)
=

(
Y1

q

)
= 1 ;

1 if Y1 =
(

Y1

p

)
=

(
Y1

q

)
= −1.

(2.13)

8. Homomorphic encryption is:

Y1 · Y2 = gX1 · gX2 · r2
1 · r2

2 mod m = gX1⊕X2 · (r1 · r2)
2 mod m. (2.14)

This means [X1]HEhek
· [X2]HEhek

= [X1 ⊕X2]HEhek
, where ⊕ means bit-wise XOR

(i.e. 0⊕ 0 = 1⊕ 1 = 0 and 0⊕ 1 = 1⊕ 0 = 1). Decryption of Y1 · Y2 will result in
X1 ⊕X2. In this case, as defined in Definition 2.4, the homomorphic operator ◦
is modular multiplication for multiplying Y1 and Y2 (◦ = ·) and is bit-wise XOR
for adding X1 and X2 (◦ = ⊕).

Figure 2.4: Goldwasser-Micali Encryption Scheme

domain [44]. As was noted in [99], the Paillier scheme has similar computational

efficiency as RSA, since both are based on modular exponentiation.

38

2.3 Building Blocks

1. Similar to RSA, let m = pq where p and q are two large distinct primes.

2. Let λ = lcm(p− 1, q − 1), where lcm is the least common multiple.

3. Randomly choose an integer g ∈ Z
∗
m2 , where Z

∗
m2 is a multiplicative group of

integers modulo m2. Ensure g has order k that is a multiple of m (i.e. m divides
k) by checking

gcd(L(gλ mod m2),m) = 1,

where gcd denotes greatest common divisor and L(u) = u−1
m .

4. The keys are: hek = (m, g) and hdk = λ.

5. Let messages X1,X2 ∈ Zm and encrypted messages Y1, Y2 ∈ Z
∗
m2 .

6. Randomly choose an integer r1 (or r2) ∈ Z
∗
m.

7. Encryption of message X1 with r1 (or X2 with r2) is:

Y1 ← [X1]HEhek
⇐⇒ Y1 = gX1 · rm

1 mod m2. (2.15)

8. Decryption of message Y1 (or Y2) is:

X1 ← [Y1]HDhdk
⇐⇒ X1 =

L(Y1
λ mod m2)

L(gλ mod m2)
mod m. (2.16)

9. Homomorphic encryption is:

Y1 · Y2 = gX1 · gX2 · rm
1 · rm

2 mod m2 = gX1+X2 · (r1 · r2)
m mod m2. (2.17)

This means [X1]HEhek
· [X2]HEhek

= [X1 +X2]HEhek
. Decryption of Y1 ·Y2 will result

in X1 + X2. In this case, as defined in Definition 2.4, the homomorphic operator
◦ is modular multiplication for multiplying Y1 and Y2 (◦ = ·) and is modular
addition for adding X1 and X2 (◦ = +). This means Paillier demonstrates an
additive homomorphic property.

Figure 2.5: Paillier Homomorphic Encryption Scheme

2.3.3 Watermarking in the Encrypted Domain

In this section we examine how digital watermarking schemes and homomorphic

encryption schemes can be integrated to achieve a technique known as watermarking

in the encrypted domain [41, 44, 108, 120]. This technique embeds a watermark into

content while both the watermark and content are in encrypted form. This is useful

when the party that performs the watermark embedding process should not have

access to the watermark. Taking the Paillier homomorphic encryption scheme and

SS watermarking scheme as examples, we show the working of watermarking in the

39

2.3 Building Blocks

encrypted domain in Figure 2.6.

1. Let content X = (x1, . . . , xn) and watermark W = (w1, . . . , wn), where both xi,
wi ∈ R, and n is the number of the most significant elements in the content to be
watermarked.

2. Let the SS embedding algorithm be:

x′
i = xi + ρwi 1 ≤ i ≤ n, (2.18)

identical to the SS algorithm presented in Figure 2.1.

3. Let [.]HEhek
be the encryption algorithm of the Pailler encryption scheme with

public encryption key hek, identical to the algorithm presented in Figure 2.5.

4. Watermarking in the encrypted domain is performed as:

[xi]HEhek
· [ρwi]HEhek

= [xi + ρwi]HEhek
= [x′

i]HEhek
1 ≤ i ≤ n. (2.19)

5. Hence [X ′]HEhek
= ([x′

1]HEhek
, [x′

2]HEhek
, . . . , [x′

n]HEhek
).

6. Note that the modulo operator of the encryption algorithm only allows computa-
tion of integers, but X, ρ and W are all based on real numbers. This issue can
be addressed by representing a real value as an integer by scaling. As an illustra-
tive example, 15.687 can be represented as 15687 or 1568700, depending on the
requirement of the underlying application [1].

Figure 2.6: Watermarking in the Encrypted Domain: Paillier and Spread Spectrum

Security for watermarking in the encrypted domain depends on the security of the

underlying homomorphic encryption scheme and the digital watermarking scheme.

One issue, which is due to the privacy homomorphism property (Definition 2.4), is

that given an encrypted marked content of a client C, [X ′]HEhekC
, an attacker can

modify this encrypted marked content by multiplying it by another ciphertext of his

choosing [Xa]HEhekC
:

[X ′]HEhekC
◦ [Xa]HEhekC

= [X ′ ◦Xa]HEhekC
,

thus modifying the marked content from X ′ to X ′ ◦Xa. In FaCT protocols, where

a distributor sends the encrypted marked content to a client, this issue can be ad-

dressed by the distributor signing the encrypted marked content so that the recipient

of this content can verify that it has not been modified during transmission. Alter-

natively, it is assumed the distributor and the client communicate through a secure

channel.

40

2.3 Building Blocks

As for computational efficiency, it depends on the size of content n and the compu-

tational efficiency of the underlying homomorphic encryption scheme. We observe in

Figure 2.6 that 2n asymmetric homomorphic encryptions are required for encrypting

the content and the watermark, and n modular multiplications for embedding the

watermark into content.

2.3.4 Cryptographic Hash Functions

A cryptographic hash function is used to protect data integrity [124]. This means

that it allows a party to check whether a message has been changed since the message

was created. Given a cryptographic hash function H(.) and a message X, computing

the function results in a hash value H(X). This hash value serves as an identifier

that links to the message X. The message X can be of arbitrary length but the

hash value H(X) normally has much smaller, fixed length. A common length of the

hash value is 160bits.

Suppose that H(X) is securely stored, but the message X is publicly accessible. If

someone changes X to X ′, the party who originally created message X can detect

that X has been altered by computing the hash function on X ′, resulting in H(X ′),

and noting that H(X) 6= H(X ′). Two well-known hash function are SHA-2 [70] and

RIPEMD-160 [37]. We formalise a cryptographic hash function in Definition 2.5.

Definition 2.5 ([124]) A cryptographic hash function H(.) is a polynomial-time algo-
rithm that on input a message X of arbitrary length, outputs a hash value H(X) of fixed
length. In addition H(.) has the following three properties:

• H(X) is pre-image resistant. This means given H(X), it is computationally in-
feasible to find X.

• H(X) is second pre-image resistant. This means given X, it is computationally
infeasible to find a message X ′ 6= X such that H(X ′) = H(X).

• H(X) is collision resistant. This means it is computationally infeasible to find any
two different messages X ′ 6= X such that H(X ′) = H(X).

2.3.5 Digital Signature Schemes

Handwritten signatures have been widely used to prove the validity of documents

(such as letters and contracts). Signatures on these documents serve as evidence

41

2.3 Building Blocks

that the party who signed them agrees with the terms and conditions listed in

these documents. Digital signatures can be thought of as electronic versions of

handwritten signatures with broadly similar aims. More precisely, they provide

data origin authentication and non-repudiation of a message. A digital signature

scheme consists of a key generation algorithm, a signing algorithm and a signature

verification algorithm. We formalise a digital signature scheme in Definition 2.6.

Definition 2.6 ([124]) A digital signature scheme is a triple (Gs , [·]SIG(·)
, [·, ·]VER(·)

)
of polynomial-time algorithms:

• On input 1k, where k is the security parameter, the key generation algorithm Gs

outputs a key pair (pvk, ssk).

• On input of a message X, the signature generation algorithm [X]SIGssk
with the

private signing key ssk outputs a signature σ. This can be represented as σ ←
[X]SIGssk

. The signed message is (X,σ).

• On input of the signed message (X,σ), the verification algorithm [X,σ]VERpvk
with

the public verification key pvk outputs true if the verification is successful, other-
wise it outputs false. This can be represented as [X,σ]VERpvk

∈ {true, false}.

We require that for all σ ∈ {[X]SIGssk
}:

[X,σ]VERpvk
= true.

The standard security notion for digital signature schemes is unforgeability [58].

This means that an efficient (polynomial-time) attacker who can repeatedly obtain

a signature on a message of his choice will not be able to generate a signature on a

newly created message. Hence digital signatures used in FaCT protocols are always

assumed to be unforgeable. The exact notion of unforgeability can be found in [58].

In terms of efficiency, instead of signing the message directly using the signature

generation algorithm, it is common practice to sign the hash value of the message,

which is normally much shorter. In our subsequent discussion we assume that this

is the case, although for brevity we only illustrate the direct signing of a message,

unless explicitly stated otherwise.

We describe the RSA signature scheme as an example. Other digital signature

schemes include the El-Gamal scheme [43], elliptic curve scheme ECDSA [71], and

ID-based schemes such as [100]. All these signature schemes can be used in a FaCT

protocol. For example, if better computation and storage performance are required,

ECDSA can be used since elliptic curve schemes are known to have much smaller

42

2.3 Building Blocks

key size than the RSA scheme. If it is preferred that a signature scheme where the

public key is a recognisable text (such as an email address) instead of a random

string, then ID-based schemes can be used. We choose to describe RSA scheme

since it is the most well-known and widely deployed scheme.

RSA Signature Scheme. This was proposed by Rivest, Shamir and Adleman

in [117] and is similar to the RSA encryption scheme illustrated in Figure 2.3. We

describe the RSA signature scheme in Figure 2.7. We remark that this is the origi-

nally proposed basic scheme and, in practice, a scheme such as RSA-PSS [83] should

be used.

1. Let m = pq where p and q are two large distinct primes.

2. Let φ(m) = (p− 1)(q − 1).

3. Choose a random integer a, where 1 < a < φ(m) and gcd(a, φ(m)) = 1, where gcd
denotes the greatest common divisor.

4. Compute ab ≡ 1 (mod φ(m)), where 1 < b < φ(m).

5. The public verification key pvk is (m,a).

6. The private signing key ssk is b.

7. Let message X and signature σ, where X,σ ∈ Zm, given Zm is a group of integers
modulo m.

8. Signing of message X is:

σ ← [X]SIGssk
⇐⇒ σ = Xb mod m. (2.20)

9. Verification of signature σ is:

[X,σ]VERpvk
= true⇐⇒ X = σa mod m. (2.21)

Figure 2.7: RSA Signature Scheme

2.3.6 Zero-Knowledge Proofs

These were first introduced by Goldwasser, Micali and Rackoff [57]. This mechanism

allows one party to prove to another party that a statement is true without revealing

any information in the statement [55]. A common application is a zero-knowledge

proof of knowledge, where a party C proves to a party D that C knows a certain secret

without revealing the secret itself. We describe one proof mechanism that is used in

the FaCT protocol proposed by Pfitzmann and Schunter [104]. This technique is the

43

2.3 Building Blocks

minimum disclosure proof of knowledge proposed by Brassard, Chaum and Crepeau

(BCC) in [17], which is based on schemes known as bit commitment schemes, also

introduced in the same proposal.

As stated in [17], a bit commitment scheme is a scheme that allows a party C to

commit himself to some bits in such a way that another party D, who is given

the commitments of these bits, cannot know what these bits are without the help

of C. We present one of the proposed bit commitment schemes. This scheme is

based on the Goldwasser-Micali homomorphic encryption scheme (Figure 2.4) and is

described in Figure 2.8. Other implementations, such as schemes based on factoring

and discrete logarithms can be found in [17].

1. Following the setting of the Goldwasser-Micali encryption scheme illustrated in
Figure 2.4:

- Let m = pq where p and q are two large distinct primes.

- Let g ∈ Z
∗
m, where g is a quadratic non-residue.

- Let X1 ∈ {0, 1}, Y1 ∈ Z
∗
m,

- Let hek = (m, g), hdk = (p, q), and

- r1 ∈ Z
∗
m.

2. Committing a bit [X1]COM hek
is identical to encryption in Goldwasser-Micali en-

cryption scheme:

Y1 ← [X1]COM hek
⇐⇒ Y1 = gX1 · r2

1 mod m. (2.22)

3. To open a commitment Y1, the party that generates the commitment Y1 reveals
r1, and verification [X1, Y1]VCOM of the commitment is as follow:

[X1, Y1]VCOM =





0 if Y1 ← [0]COM hek
;

1 if Y1 ← [1]COM hek
;

• Otherwise,
(2.23)

where • means undefined. In other words, Y1 is irrelevant to X1 = 0 or X1 = 1.

Figure 2.8: BCC Homomorphic Bit Commitment Scheme based on Goldwasser-Micali [17]

We will discuss how this scheme is used to provide a zero-knowledge proof of knowl-

edges in the description of the Pfitzmann and Schunter protocol in the next chapter.

In addition, as can be observed from the description in Figure 2.8, this bit com-

mitment scheme has the identical homomorphic property of the Goldwasser-Micali

encryption scheme, due to its commitment algorithm being identical to that of the

Goldwasser-Micali encryption algorithm. Hence it can also be used for embedding

44

2.4 Summary

a watermark into content in the encrypted domain.

2.4 Summary

In this chapter, we first discussed how digital content can be easily and effectively

distributed due to the proliferation of increasingly powerful computing devices. We

illustrated three common content distribution models. We then discussed concerns

relating to illegal distribution of digital content in these models. We illustrated how

content tracing can be used to address these concerns. We further raised the issue of

framing and denial caused by content tracing, where the distributor has the ability

to frame an honest client, while at the same time is unable to prove illegal content

distribution by a dishonest client. These issues motivated fair content tracing. We

introduced fair content tracing (FaCT) protocols as a means to address these issues.

Finally we briefly introduced some of the watermarking and cryptographic building

blocks required to realise these protocols.

45

Chapter 3

A Design Framework for FaCT

Protocols

Contents

3.1 Why A Design Framework? 47

3.2 Overview of the Framework 48

3.3 Fundamentals . 49

3.3.1 Parties Involved . 49

3.3.2 Threats . 51

3.3.3 Security Requirements . 53

3.3.4 The Three Phases . 54

3.4 Environment . 55

3.4.1 Computing Resources . 55

3.4.2 Trust Infrastructures . 56

3.4.3 Building Blocks . 59

3.5 Classification . 60

3.5.1 Category 1: Protocols without Trusted Third Parties 61

3.5.2 Category 2: Protocols with Online Trusted Third Parties . 65

3.5.3 Category 3: Protocols with Offline Trusted Third Parties . 67

3.5.4 Category 4: Protocols with Trusted Hardware 69

3.5.5 Adding Anonymity and Unlinkability 71

3.5.6 Adding Payment and Fair Exchange 74

3.6 Evaluation Criteria . 78

3.6.1 Brief Analysis of the Four Categories 79

3.7 An Example: The Memon-Wong Protocol 81

3.7.1 Security . 86

3.7.2 Efficiency . 87

3.8 Summary . 88

46

3.1 Why A Design Framework?

This chapter presents a design framework for FaCT protocols. We discuss the design

issues in existing protocols that motivate the proposal of a general framework. We

define the components of this framework and demonstrate how the framework pro-

vides a means to address the design issues, and to analyse and classify existing FaCT

protocols. Using the framework, we examine one of the earliest FaCT protocols as

an example.

3.1 Why A Design Framework?

There is no obvious way to analyse the various protocols proposed to date, where dif-

ferent design notions and approaches are used. The existing protocols use different

terms and different interpretations of security requirements in their construction.

This is especially true in the BSW protocols that we briefly discussed in Section 2.2.

More importantly, in many cases there are no assumptions, threat model or appro-

priate security requirements defined for many of these protocols.

Without a framework, protocols that build on earlier protocols tend to become more

complicated and prone to error. Newer proposals introduce new features (or “fixes”)

on top of the existing ones, or propose an alternative approach in an ad hoc way.

These are exemplified by the many protocols proposed since Memon and Wong [94],

and Pfitzmann and Schunter [104], as previously discussed in Section 2.2. The result

is that additional features are not always added with a clear definition of purpose.

Furthermore, a proper analysis of security is often lacking. As a consequence, these

ad hoc designs are hard to analyse and some even contain flaws, as we will show in

Chapter 4 and Chapter 5.

A general design framework with proper notions and definitions is necessary in order

to design FaCT protocols in a systematic manner. In the next section we outline

such a framework.

47

3.2 Overview of the Framework

3.2 Overview of the Framework

The proposed design framework consists of two components—fundamentals and

environment—that provides general guidelines on the construction of FaCT pro-

tocols. It is used as a basis to examine existing protocols and design new ones, and

to identify the different classes of FaCT protocols. We first overview the two main

components:

• Fundamentals. This aims to provide a clear view on the objectives (or goals)

of a FaCT protocol. It consists of the parties involved, threats, security re-

quirements and phases of a FaCT protocol.

– The parties involved identifies the roles of the many players in a FaCT

protocol. It also defines the trust assumptions between these players.

– The threats establish a basic threat model that identifies the main threats

faced by the players in a FaCT protocol.

– The security requirements identify precisely what a FaCT protocol should

achieve.

– The phases categorise the protocol steps of a FaCT protocol into commu-

nication before, during and after content distribution between the parties

involved.

• Environment. This aims to identify the elements that are available for con-

structing a FaCT protocol. It consists of computing resources, trust infrastruc-

ture and building blocks.

– The computing resources identify the resources that the distributor and

the client possess for processing, viewing and sharing of content. For

example, the distributor may have more powerful computing devices than

the client. The resource available can be used to determine whether

limitations must be put in place.

– The trust infrastructure identifies whether trusted third parties or any

trusted platforms can be used in the construction of a FaCT protocol.

– The building blocks identify the underlying components (Section 2.3) that

can be used to construct a FaCT protocol.

48

3.3 Fundamentals

Figure 3.1 illustrates the framework. A preliminary study of this framework was

presented in [109].

Parties

Computing
Resources

Trust
Infrastructures

Environment

Security

Fundamentals

Building
Blocks

ThreatsInvolved Requirements Phases

Initial Setup

Content Watermarking

and Distribution

Identification and

Dispute Resolution

Traceability

Framing Resistance

Non-repudiation of

Redistribution

Secure Communication

Anonymity and

Unlinkability

Fair Exchange

C

D

KC

WCA

A

Insecure Channel

Illegal
Distribution

Framing

Denial of

Redistribution

Privacy Concern

Unfair Trading

Secure Communication
Support

D and C

Support

TTPs with
Specific Services

Public Key

D has ample resources,

have ample resources

C has limited resources

Digital Watermarking

Schemes

Encryption Schemes

Digital Signature
Schemes

Hash Functions

Watermarking in the

Encrypted Domain

Zero-Knowledge Proofs

Figure 3.1: A General Framework

3.3 Fundamentals

These aim to provide a proper definition of the objectives of a FaCT protocol.

3.3.1 Parties Involved

The two main parties are the client C and the distributor D:

• The distributor D is a service provider who distributes (or sells) digital content

to the client C.

• The client C is a user of digital content who receives (or purchases) digital

content from the distributor D.

49

3.3 Fundamentals

There are also potentially one or more trusted third parties (TTPs):

• A key centre KC, generates and distributes key materials. For example, in the

Pfitzmann-Schunter protocol that we discuss in Section 4.2, the KC takes the

form of a certificate authority CA and is required to certify the public keys of

C.

• A watermark certification authority WCA, generates client watermarks, such

as in the Memon-Wong protocol that we discuss in Section 3.7.

• An arbiter A, attempts to resolve disputes between C and D.

Trust Assumptions. We now define the trust relationships between these parties:

• It is assumed that C and D do not trust each other. By this we mean that it is

possible that C and D may try to gain unfair advantage against one another.

For example, in our context, a dishonest C gains advantage against D when

he successfully redistributes a copy of content illegally without being traced

by D.

• The arbiter A is fully trusted. This means that C, D, and other parties in-

volved, such as the WCA, trust A to behave honestly. This also means that A

will not collude with D or any other parties to falsely accuse an innocent client

of illegal content distribution. Similarly, A will not collude with C or any other

parties so that a dishonest C can freely redistribute copies of content.

• The key centre KC is fully trusted. This means that signatures generated by

the KC are always viewed as valid when verification of these signatures based

on the KC’s public verification key is successful.

• The watermark certification authority WCA is fully trusted. This means C,

D, A, and other parties involved, such as the KC, trust the WCA to behave

honestly. This also means that the WCA will not collude with D to frame an

innocent client, or collude with a dishonest C in such a way that C can freely

redistribute copies of content.

We remark that it is important to explicitly state the trust relationships between

the parties involved since security issues may arise if these are ambiguous, as in the

50

3.3 Fundamentals

case of an attack known as the conspiracy problem that we discuss in Chapter 4.

Also, as stated above, collusion with trusted third parties does not occur. This rea-

sonably reflects our common practical relationships with trusted parties, e.g. where

banks, and legal authorities do not typically conspire with customers. Conspiracies

involving trusted parties would render many security applications unworkable.

We further note that the stated trust assumptions do not represent an exhaustive

list. Depending on the design of a FaCT protocol, there may be other parties

involved with different associated trust assumptions. What is crucial is that these

trust assumptions are well defined.

3.3.2 Threats

We define three threat scenarios for FaCT protocols.

Threats to the communication channel captures the threats during the commu-

nication between two parties. We follow the standard Dolev-Yao threat model [38],

since this model is well-established. In this model an attacker has the following

abilities:

• The attacker is in possession of all the messages passing through the commu-

nication channel between the parties involved.

• The attacker can be a legitimate party of the protocol, and thus can initiate

communication with any other parties involved.

• The attacker can redirect messages in the communication channel, hence he

can be a recipient of messages not intended for him, and he can impersonate

another party in order to send message to other parties.

In other words, the attacker has complete control of the communication channel.

For example, a dishonest Ca (or a dishonest Da) can listen to, and try to modify,

the communication between an honest C and an honest D. The threat model also

assumes that the underlying building blocks applied in the construction of a FaCT

protocol are secure. For example, the adversary cannot compute a private signing

key from a digital signature.

51

3.3 Fundamentals

Security against the threats to the communication channel is very important since,

if the communication channel is insecure, it is possible for outsiders, or any of the

legitimate clients and distributors, to launch standard protocol attacks such as re-

playing the messages or impersonating other parties, as described in [16]. This also

means that any dishonest clients or distributors can use such a weakness to defeat

fair content tracing.

Threats due to content tracing captures the specific issues that a FaCT protocol

intends to address, as discussed in Section 2.1.3. This captures the specific content

distribution threats that occur after the communication between two parties has

ended successfully. The threats are:

• Dishonest clients. A dishonest C may redistribute copies of content either

for monetary gain or for sharing with others, and will deny this fact when

confronted by D.

• Dishonest distributors. An unscrupulous D may frame C by falsely accusing

C of illegal content distribution.

Threats to client privacy and fair trading captures the threats that occur

when privacy is a concern and/or payment is involved. We remark that payment,

in a broad sense, means the information requested by D in order for D to agree to

provide content to C. In most circumstances, this means monetary gain, hence the

term payment.

• Privacy concern: dishonest distributors. D gathers information about C, such

as for marketing purposes, even when C prefers to get content from D without

revealing his real identity.

• When payment is involved:

– Dishonest clients. A dishonest C can choose not to follow the protocol

honestly, so as to gain advantage over D, such as running away with

content without paying (or without providing the information requested

by D).

– Dishonest distributors. A dishonest D may refuse to provide content (or

provide corrupted content) to C after payment has been received.

52

3.3 Fundamentals

3.3.3 Security Requirements

We now define the security requirements of a FaCT protocol.

1. Secure Communication. A communication channel between two parties is se-

cure if:

• data secrecy (or confidentiality) is preserved when needed,

• the parties involved can be authenticated,

• and data integrity can be checked.

This addresses the threats on the communication channel. Following this, there are

three specific security requirements for FaCT protocols:

2. Traceability. A legitimate, but dishonest C who illegally distributes content

can be traced to their identity by D.

3. Framing Resistance. An honest C cannot be falsely accused of illegal distri-

bution by D.

4. Non-repudiation of Redistribution. A dishonest C who illegally distributes

copies of content cannot deny such an act. This means that D is able to prove

the illegal act of C to a third party. Framing resistance is a prerequisite since,

without it, C can claim that it is D who redistributed the content.

A FaCT protocol is a weak FaCT protocol if it fulfills only traceability and framing

resistance, while it is a strong FaCT protocol if it fulfills all three requirements.

These three requirements address the threats due to content tracing. We note that

the protocols discussed in this thesis are strong FaCT protocols unless we state

otherwise (e.g. the DAA protocol in Section 7.3.2). The next two requirements are

optional:

5. Anonymity and Unlinkability. In the case where client privacy is a concern, C

can obtain content anonymously from D. Furthermore, given any two contents,

D cannot tell whether they are from the same C.

53

3.3 Fundamentals

6. Fair Exchange. In the case where there is payment involved, either both parties

(D and C) are satisfied, or no party gains advantage over the other. For

example, in our context, C does not receive content if D does not receive

payment (see Chapter 8 for further discussion).

Table 3.1 summarises these security requirements. We note that except for the first

and the last requirements, all other requirements have been previously mentioned

(in various forms and combinations) in [19, 25, 54, 74, 78, 85, 102, 105]. Consoli-

dating these security requirements allows for FaCT protocols to be analysed more

meaningfully.

Table 3.1: Issues and Requirements
Issues Requirements

Insecure channel Secure communication
Illegal distribution Traceability

(deterrence using digital watermarking)
Framing Framing resistance
Denial of redistribution Non-repudiation of redistribution
Privacy concern Anonymity and unlinkability
Fair distribution Fair exchange
(when payment is involved)

3.3.4 The Three Phases

This section describes the three main phases of a FaCT protocol. It is assumed that

all phases are conducted under secure communication support, which we discuss in

Section 3.4.2, unless it is explicitly stated otherwise.

Phase 1: Initial Setup. In this phase C and D generate key materials. The KC

verifies and signs the public keys of C and D. Hence the main aim of this phase is to

provide key materials for C and D to support the required cryptographic services.

The signed public keys can then be publicly distributed to other parties who need to

use them. We assume that the activities in this offline phase are carried out before

content distribution. We also assume that prior to this the major trusted third

parties, such as the KC, WCA and A, have obtained their respective authenticated

public keys based on a public key support, which we discuss in Section 3.4.2.

Phase 2: Content Watermarking and Distribution. This is the phase where

content distribution is carried out. It is an online process. In this phase C requests

54

3.4 Environment

content from D, and D sends encrypted marked content to C. Provision of traceabil-

ity, framing resistance and non-repudiation of redistribution takes place during this

phase using the authenticated keys obtained in the initial setup. The objective of

this phase is to provide C with the requested content and at the same time provide

all the main security requirements of a FaCT protocol.

Phase 3: Identification and Dispute Resolution. In this phase D identifies C

from a found copy of content. If necessary, D proves to A that C illegally distributed

content by showing A some evidence. This evidence normally consists of at least the

client watermark and the client’s signature on an agreement describing the content.

Most FaCT protocols require that A obtains the client watermark from another

party (e.g. C or a trusted third party).

3.4 Environment

In this section we describe the second component of our framework. The main

purpose of this component is to provide the design “modules” (or parameters) that

can be chosen and then assembled to construct a FaCT protocol.

3.4.1 Computing Resources

This refers to the computing power and storage available to the parties involved.

We categorise the computing resources, notably for D and C, based on the following

scenarios:

• The distributor and the client have ample resources. In this scenario both D

and C are assumed to be capable of performing resource intensive computa-

tions (e.g. computing many public-key operations). It is also assumed that

both D and C have ample storage. We can further divide this into two different

settings:

– A distributor acts as a central server. In this case we will expect D to have

significantly more resources than C, so that D has the capacity to provide

services to many clients at one time. For example, the content broadcast

55

3.4 Environment

and buyer-seller content purchase models discussed in Section 2.1 are such

scenarios, where iTune Store [68] is an example.

– A client that also acts as a distributor. In this case both C and D are

assumed to have similar computing resources, but typically less than the

distributor in the central server setting above. This scenario applies to

the peer-to-peer model described in Section 2.1, where Gnutella [52] is an

example.

• The distributor has ample resources, while the client has limited resources. In

this setting D has no problem performing resource intensive computation but

C has limited computing resource and storage capability. In this scenario, C

may not be able to compute many public-key operations. This scenario applies

to applications where C is a resource-limited portable device, such as a mobile

phone.

The computing resources available to D and C influence the choice of building

blocks for a FaCT protocol. In the scenario where C has limited resources then

resource intensive mechanisms such as watermarking in the encrypted domain based

on asymmetric homomorphic encryption schemes (Section 2.3.3) may not be suitable.

Efficient methods potentially suitable for this scenario were proposed recently [81,

110, 137], as discussed in Chapters 5 and 6. However we note that most existing

FaCT protocols implicitly assume that both C and D have ample resources. All the

new protocols proposed in this thesis are also for this scenario.

3.4.2 Trust Infrastructures

These are infrastructures that can be thought of as central points of contact for

providing security services. They represent a crucial element of any FaCT protocol.

For example, in Internet banking or e-shopping applications, there must be a certain

trust infrastructure to ensure the authenticity of the banking or shopping website as

well as the authenticity of the user. The trust infrastructure in this case is commonly

provided by a PKI supporting the use of digital certificates. These certificates are

generated by a trusted party known as a certificate authority CA. A FaCT protocol

may involve the following trust infrastructures:

56

3.4 Environment

Public Key Support. The security requirements stated in Section 3.3.3, notably

non-repudiation of redistribution, requires the generation of non-repudiable proofs

(e.g. a digital signature) so that it is possible to prove the guilt of a dishonest

client. A standard way of providing this proof is by deploying a digital signature

scheme, which we defined and gave examples of in Section 2.3.5. In addition, many

existing protocols use asymmetric homomorphic encryption schemes (Section 2.3.2)

as tools for providing framing resistance. Both digital signatures and homomorphic

encryption schemes require the distribution of public verification and encryption

keys prior to the content distribution process. These keys must be authenticated so

that a party who uses these keys knows that they belong to the legitimate parties.

To achieve this, we assume the existence of a PKI.

Secure Communication Support. In a FaCT protocol, before C requests con-

tent from D, C will want to know that he is indeed talking to D. Similarly, D will

want to be sure that he is indeed communicating with C. In other words, C and D

must authenticate each other.

One way to provide this is by using entity authentication and key establishment

(AKE) protocols [8, 9, 13, 16]. These protocols are run between two parties to

achieve the following goals:

• Mutual Entity Authentication. Each party gains confidence in the identity of

their communication partner [9]. In content distribution and tracing environ-

ments this is particularly important, since it is reasonable to assume that one

distributor can distribute content to many clients at the same time.

• Key Establishment. Distribution of a secret “session key” that is agreed be-

tween the two communicating parties, which can be used for protecting data

secrecy, data integrity and other security services. One important property of

the key is that it is distinct for each different protocol run between the two

parties.

There are many different AKE protocols. Some have formal proofs of security [8, 9,

13], and some have been standardised [35, 73]. A FaCT protocol should deploy a well-

established AKE protocol in order to fulfill the secure communication requirement,

57

3.4 Environment

which we defined in Section 3.3.3. We explicitly assume the existence of secure

communication support in most of our protocol discussions, instead of the implicit

assumption of many existing protocols [85, 94].

Trusted Third Parties (TTPs) with Specific Services. In addition, there

may be extra trusted third parties required for specific services (see Section 3.3.1).

Regardless of their functions, they can be classified as either:

• Online TTPs. These are TTPs that are involved during content distribution.

In this case, D (or C) needs to contact the TTP to obtain information after

C (or D) initiates execution of the protocol. Since it is possible for many

clients (or many distributors) to request information from the distributor (or

the client) at anytime, the TTP has to always be online. One example protocol

where an online TTP is present is the Lei-Yu-Tsai-Chan protocol in [85], which

we will describe in Section 5.2.

• Offline TTPs. These are TTPs that are involved before content distribution. In

general, C (or D) contacts such a TTP to request information before continuing

the execution of the protocol with D (or C). During the protocol run, the TTP

is not involved. For example, in the Memon-Wong protocol that we discuss in

Section 3.7, C contacts the WCA to obtain client watermarks before contacting

D to obtain content.

• Trusted Hardware. This refers to specific hardware devices that provide the

functionality of the online or offline TTPs described above. Such trusted hard-

ware allows information to be generated in a trusted environment, which means

that the information can only be generated and changed by authorised com-

puter processes. The Trusted Platform Module (TPM) of the trusted comput-

ing initiative [95, 130] is one such device. The main characteristic of trusted

hardware is that it is embedded as part of the computing platform itself. So

instead of the need to contact a central TTP, trusted hardware within the

computing platform can be used, making it most suitable for distributed com-

puting environments. We will describe FaCT protocols that rely on a TPM

in Chapter 7. We also remark that smart cards may also be deployed [91].

Although with a more restricted functionality compared to the TPM, their

58

3.4 Environment

present as a component of the computing platforms of C and D in a FaCT

protocols offer at least a secure storage of private key materials.

The choice of type of TTP depends on the underlying applications. For example,

one may choose to deploy a trusted hardware module if extra hardware cost is

not an issue, since these are embedded into many devices and are more scalable for

distributed environments. Similarly, one may choose an offline TTP if the underlying

application dictates it most convenient for C to request information from the TTP

before the actual execution of the protocol, keeping communication overheads during

execution to a minimum.

3.4.3 Building Blocks

These are the technical means to fulfill the core security services needed by a FaCT

protocol. These were presented in Section 2.3, and so in the following we only briefly

identify the role of each of these building blocks:

• Digital watermarking schemes (Section 2.3.1) are used to provide traceability.

• Digital signature schemes (Section 2.3.5), which make use of cryptographic hash

functions (Section 2.3.4), are used to provide non-repudiation of redistribution.

Together with public key support, these are also used to provide anonymity

and unlinkability and fair exchange.

• For some FaCT protocols, homomorphic encryption schemes (Section 2.3.2),

together with digital watermarking schemes, are used to provide watermark-

ing in the encrypted domain (Section 2.3.3). This is used to provide framing

resistance.

• For some FaCT protocols, zero-knowledge proofs (Section 2.3.6) are used to-

gether with watermarking in the encrypted domain to provide framing resis-

tance.

59

3.5 Classification

3.5 Classification

The aim of this section is to classify FaCT protocols into categories that facilitates

analysis. This classification also provides a platform from which to explore new

designs. We choose to use the presence of trusted third parties with specific services

described in Section 3.4.2 as our major classification criterion. This is because

the presence and role of trusted third parties significantly influences the underlying

building blocks that can be deployed. More importantly, it raises the crucial issue

of who is to generate the clients’ watermark, which has security ramifications for all

three of the specific security requirements of a FaCT protocol, as we shall see in

Chapters 4, 5 and 6.

We identify four categories of protocols. These are protocols without trusted third

parties, protocols with online trusted third parties, protocols with offline trusted third

parties and protocols with trusted hardware.

We remark that the classification criterion is based on trusted third parties that

provide watermark related information. It does not take into account trusted third

parties that only provide public key support, as described in Section 3.4.2 (for ex-

ample a KC that functions only as a CA) since all FaCT protocols require such a

third party to provide services for entity authentication and non-repudiation.

We now describe the general constructions of protocols in the four categories. The

main aim is to illustrate how these categories are designed differently from each other

based on the parties involved and their protocol flows. We avoid protocol specifics

and discuss this only in terms of the following common objects:

• f(W). The object that contains the client watermark W . It plays a crucial

role in providing framing resistance in many existing FaCT protocols. As an

example, f(W) can be an encrypted watermark [W]HEhekC
produced using C’s

encryption key and an asymmetric homomorphic encryption scheme (see Sec-

tion 3.7), or f(W) can be a decryption key that contains the client watermark

(see Section 6.3).

• f(X̃). The object that contains the marked content X̃. It ensures traceability

and framing resistance. For example, f(X̃) can be an encrypted marked con-

tent [X ′′]HEhekC
produced using C’s encryption key and an asymmetric homo-

60

3.5 Classification

morphic encryption scheme, or an encrypted marked content [X ′]EK
produced

using a secret key K and a symmetric encryption scheme (see Sections 3.7

and 6.2).

• SIG. Digital signatures of objects such as the client watermark. These signa-

tures provide data origin authentication and non-repudiation of redistribution.

For example, SIG can be a signature [AGR]SIGssk∗
on a content agreement AGR

signed by C using key ssk∗, or a digital certificate CertsskCA
(pvk∗

C , hek∗
C) con-

taining public keys and identity information of C (see Section 5.2).

• AGR. A content agreement that contains a description of content and licensing

terms for using the content. When AGR is signed together with f(W) by C,

the resulting signature shows that C agrees to the terms stipulated in the

agreement. Furthermore, it binds f(W) and AGR together so that it is not

possible for any party to place an extracted watermark from a found copy into

different content. We will look at this issue in the next chapter (Section 4.3).

We further introduce a general term info, which may contain objects such as a

content agreement AGR, a signature SIG and other necessary information, depending

on the specific FaCT protocol. We also use the notation {·}AKE to mean that the

message is transmitted under secure communication support.

3.5.1 Category 1: Protocols without Trusted Third Parties

Our first category is a family of FaCT protocols that do not use the WCA. Their

main common characteristic is that C generates the watermark, and this water-

mark is embedded into content by D in such a way that D has no knowledge of

the watermark. Allowing C to generate the watermark means that extra security

measures must be put in place to prevent C from generating an ill-formed water-

mark. A watermark is said to be well-formed if it is a pseudo-random sequence of

real numbers. Otherwise it is ill-formed. For example, a common ill-formed water-

mark is a string of zero, W = (0, 0, . . . , 0). FaCT protocols of this type were first

proposed by Pfitzmann and Schunter in [104]. Subsequently many protocols were

proposed [12, 19, 33, 39, 40, 54, 65, 66, 78, 102, 103, 104, 105, 138, 139]. The three

phases are described below:

61

3.5 Classification

Initial Setup. In this phase C and D register with the KC to obtain authenticated

public keys. The main protocol messages are shown in Figure 3.2, and the protocol

steps are as follows:

(I) C and D register with the KC to obtain authenticated public keys.

1. The protocol message is:

I → KC : {info}AKE .

The parties involved I (which can either be C or D) generate their respective

asymmetric encryption and/or signature key pairs. The public keys are given

to the KC together with their identity or personal information (e.g. IDC and

IDD). Hence info may contain the public keys and IDC or IDD.

(II) The KC generates and provides C and D with the authenticated key materials.

2. This is shown as:

KC→ I : {info, SIG}AKE .

The KC (e.g. a CA) generates a signature SIG that contains information

to prove the authenticity of the public keys of C (or D). As an example,

SIG can be a signature [hekC , pvkC , IDC]SIGsskKC
, where hekC and pvkC are

the public encryption and verification keys of C, and IDC is the identity or

personal information of C. In the description of certain existing protocols, we

sometimes represent SIG as CertsskCA
(IDC), following the notation used in

the existing protocols where the central trusted third party is a CA. The info

denotes other information that may need to be included and can be an empty

string.

Before

1

content
I → KC {info}

AKE:

distribution

Initial Setup:

KC → I {info, SIG}
AKE:

Figure 3.2: Protocols without TTPs – Initial Setup

62

3.5 Classification

Content Watermarking and Distribution. In this phase C receives marked con-

tent from D. It only involves C and D. The protocol messages are shown in

Figure 3.3 and the protocol steps are as follows:

2

C → D {info, f(W), SIG}
AKE:

D → C

{
info, f(X̃)

}

AKE
:

Content

distribution

Content Watermarking and Distribution:

Figure 3.3: Protocols without TTPs – Content Watermarking and Distribution

(I) C requests content and generates watermark information.

1. The protocol message is:

C → D : {info, f(W), SIG}AKE .

In this step C sends a request for content to D. C also generates watermark

information f(W). For example, f(W) can be an encrypted client watermark.

In many FaCT protocols C also approves a content agreement AGR with D.

If this is the case then the signature SIG denotes a signature produced by C

on f(W) and AGR. The info may consists of AGR, the public keys of C, and

the signature on these keys to prove their validity so that D can use these keys

when needed.

(II) D produces a marked copy of the requested content and sends it to C.

2. The protocol message is:

D → C :
{
info, f(X̃)

}
AKE

.

In this step D produces a marked content. The common method is to use wa-

termarking in the encrypted domain, with the watermark information provided

by C (see Section 2.3.3). The purpose is to embed the watermark, while at the

same time preventing D from knowing what the watermark is. Since D has

no way of determining the watermark, he may also embed another watermark

so that he is able to identify the client that owns a specific content. We will

observe these operations when we discuss the existing protocols in Chapter 4.

63

3.5 Classification

The resulting encrypted marked content f(X̃) can then be sent to C. It is

also common for many protocols to sign this encrypted marked content so as

to ensure data authenticity. Hence info may include a signature.

Identification and Dispute Resolution. In this phase D identifies C from a

found copy of content, and proves the client’s act of illegal distribution to a third

party. It involves at least D and A. Most of the protocols also require C or the KC

to be involved. The protocol messages are shown in Figure 3.4.

3

D {true, false} ← fWM ():

D → A

{
info, X̂, SIG

}

AKE
: After

content

distribution
A→ C or KC {watermark info?}

AKE:

C or KC → A {watermark info}
AKE:

A {true, false} ← fWM ():

Identification and Dispute Resolution:

Figure 3.4: Protocols without TTPs – Identification and Dispute Resolution

The protocol steps are as follows:

(I) D detects a watermark from the found copy of content in order to identify the

client that owns the content.

1. The detection is:

D : {true, false} ← fWM (),

where fWM () means a watermark detection algorithm of a digital watermark-

ing scheme, which we discussed in Section 2.3.1. The purpose is to identify

the client based on the detected watermark.

(II) D proves to A that C illegally distributed copies of content.

2. D sends evidence that shows C is the owner of the found content to A. This

information can be C’s signatures produced on the content agreement and

the encrypted watermark during the execution of the Content Watermarking

and Distribution phase. Since for different protocol designs the signatures

required are different, we represent such information in the protocol message

as SIG. D also needs to send the found copy of content X̂ to A. There may be

64

3.5 Classification

other information such as AGR that needs to be passed on to A. Hence info

may contain AGR.

D → A :
{
info, X̂, SIG

}
AKE

.

Upon verifying the validity of information given by D, A requests from either

C or KC the client watermark, or information on the watermark. This will

allow A to detect the watermark from X̂.

A→ C or KC : {watermark info?}AKE .

C or the KC then sends the watermark information to A.

C or KC→ A : {watermark info}AKE .

A uses the provided watermark information and the watermark detection al-

gorithm to detect the client watermark. If the detection is successful, then

based on all the information provided by D, A declares C guilty. Otherwise,

A declares C innocent.

A : {true, false} ← fWM ().

3.5.2 Category 2: Protocols with Online Trusted Third Parties

This category includes all protocols that require a special online trusted third party

(TTP), which we refer to as a watermark certification authority WCA, in addition

to the KC. The main characteristic of protocols in this category is that the WCA is

tasked with generating client watermarks, thus avoiding the issue of C generating

ill-formed watermarks faced in the previous category. However, the WCA always

needs to be available for either D or C to request the client watermark. Hence

requiring such an online trusted third party adds to the communication overhead.

Example protocols based on this model include proposals in [3, 50, 85, 137].

Initial Setup. This phase is identical to that of Category 1.

Content Watermarking and Distribution. The difference between this phase and

the similar phase in Category 1 is that the client watermarks are generated by the

WCA, instead of by C. The protocol messages are illustrated in Figure 3.5 and the

protocol steps are as follows:

65

3.5 Classification

D → WCA {watermark-request info}
AKE:

WCA → D {info, f(W), SIG}
AKE:

2

content

distribution

Content Watermarking and Distribution:

C → D {info, SIG}
AKE:

D → C

{
info, f(X̃)

}

AKE
:

Figure 3.5: Protocols with Online TTPs – Content Watermarking and Distribution

(I) C requests content from D.

1. The protocol message is:

C → D : {info, SIG}AKE .

Here info may contain AGR and the public keys of C, while SIG can be a

signature on AGR.

(II) D requests watermark information from the WCA.

2. The protocol message is:

D →WCA : {watermark-request info}AKE .

D sends necessary information to convince the WCA that a client has requested

content, so that the WCA will provide D with the watermark information.

Such information is normally a client watermark. For example, the information

submitted to the WCA may consist of all the information provided by C in

Step (I):

watermark-request info = (info, SIG) .

(III) The WCA sends the watermark information to D.

3. The protocol message is:

WCA→ D : {info, f(W), SIG}AKE .

In this step the WCA generates a client watermark W , encrypts it with C’s

public key and signs the encrypted watermark W . The encrypted watermark

f(W) and the signature SIG are given to D. The signature may also contain

AGR and a signature generated by C on this agreement.

66

3.5 Classification

(IV) D produces a marked copy of the requested content and sends it to C.

4. This step is identical to step (II) of the Content Watermarking and Distri-

bution phase in Category 1.

Identification and Dispute Resolution. This involves D, the WCA and A.

The WCA is required since it is the only party that has access to the client water-

mark, and A will have to contact this WCA to obtain this watermark for watermark

detection. It is similar to the Identification and Dispute Resolution phase

in Category 1, except that A contacts the WCA to request a client watermark,

instead of contacting C or the KC. The protocol messages are shown in Figure 3.6.

3

D {true, false} ← fWM ():

D → A : After

content

distribution
A→ WCA {watermark info?}

AKE:

WCA → A {watermark info}
AKE:

A {true, false} ← fWM ():

Identification and Dispute Resolution:

{
info, X̂, SIG

}

AKE

Figure 3.6: Protocols with Online TTPs – Identification and Dispute Resolution

3.5.3 Category 3: Protocols with Offline Trusted Third Parties

This model uses an offline TTP to generate watermark information (e.g. a client

watermark), which is then passed to C. The TTP is offline since it is not involved in

the actual content distribution between D and C. In other words, the TTP can be

offline once C receives the watermark information. The Memon-Wong protocol [94]

that will be presented in Section 3.7 falls into this category. Other protocols following

this model are [24, 25, 74, 81, 110, 123].

Initial Setup. In this phase C and D obtain authenticated keys from the KC. In

contrast to Category 1 and 2, C also contacts the TTP to obtain a client watermark

(or a batch of distinct client watermarks). This means that the TTP need not be

online when C requests content from D. The protocol messages are illustrated in

Figure 3.7 and the protocol steps are as follows:

[(I-II)] The first two steps are identical to Step (I) and Step (II) in the Initial

Setup phase of Category 1 and 2.

67

3.5 Classification

(III) C requests watermark information from the TTP.

3. The protocol message is:

C → TTP : {watermark-request info}AKE .

In this step C sends the necessary information to convince the TTP that he is

a legitimate user. For example:

watermark-request info = (info, SIG) ,

where info contains C’s identity information IDC and his public keys, while

SIG contains the KC’s signature on these keys obtained from Step (I) and (II).

(IV) The TTP sends the watermark information to C.

4. The protocol message is:

TTP→ C : {info, f(W), SIG}AKE .

Upon verifying C’s request, the TTP provides C with the watermark informa-

tion f(W). This can be a client watermark, or key materials that contain a

watermark, and it is signed to ensure data authenticity.

Before

1

content

I → KC :

distribution

Initial Setup:

KC → I :

C → TTP :

TTP → C :

{info}
AKE

{info, SIG}
AKE

{watermark-request info}
AKE

{info, f(W), SIG}
AKE

Figure 3.7: Protocols with Offline TTPs – Initial Setup

The Content Watermarking and Distribution phase is similar to the phase in

Category 1. The only difference is that the watermark information is provided by

the TTP to C, instead of being generated by C. The Identification and Dispute

Resolution phase, on the other hand, is identical to that of Category 2.

68

3.5 Classification

3.5.4 Category 4: Protocols with Trusted Hardware

Protocols in this category deploy trusted hardware in D’s and/or C’s computing

platforms. The main idea is to use this trusted hardware to generate and/or verifying

client watermark information. It can also be used to securely embed watermarks into

content. These devices can play the roles of either the online or offline TTP in the

previous categories. For example, instead of contacting the WCA in Category 2,

D may deploy trusted hardware to replace the WCA. We discuss one such protocol

in Section 7.2. The major advantage is that, especially if the device resides on

C’s computing platform, there is no single central TTP, but many different devices

in each client’s computing platform. This allows for scalability and so is more

suitable for distributed computing environments. Such setup also allows the device

to play the role of an offline TTP, albeit a distributed one. However, the extra

cost of hardware implementation must be factored into the design of such protocols.

In [129] a general framework was suggested for how trusted hardware can be used to

design secure content distribution infrastructures. Other protocols proposed in this

category are [46] and [86]. The general construction of protocols in this category is

presented below.

Initial Setup. This phase is identical to that of Category 1.

Content Watermarking and Distribution. In addition to C and D, it also in-

volves trusted hardware TH. The protocol messages are shown in Figure 3.8 and the

protocol steps are as follows:

D ⇀↽ TH

2

:

D → C :

content

distribution

C → D :

Content Watermarking and Distribution:

C ⇀↽ TH {info, W}
AKE:

C → D : {info, f(W), SIG}
AKE

OR

{info, SIG}
AKE

{info, f(W)}
AKE

{
info, f(X̃)

}

AKE

Figure 3.8: Protocols with TH – Content Watermarking and Distribution

There are two cases. If the trusted hardware is in C’s computing platform then:

(Ia) C (or TH) generates the watermark and the trusted hardware verifies the wa-

69

3.5 Classification

termark to be well-formed.

1. In this step, before C requests content from D, C (or the trusted hardware)

generates a watermark W . The trusted hardware checks W to ensure that

the watermark is well-formed, and passes W and the watermark well-formed

measurement to C. The interactions between C and TH are shown as:

C ⇋ TH : {info, W}AKE ,

where info may contain the measurement on the watermark and ⇋ means the

communication between C’s computing platform and TH.

(IIa) C requests content and provides D with the watermark information.

2. This step is identical to Step (I) in the Content Watermarking and Distri-

bution phase in Category 1, except that, as shown in Step (Ia) above, the

watermark is processed by TH, instead of C.

If the trusted hardware is in D’s computing platform then:

(Ib) C requests content from D.

1. This step is identical to Step (I) in the Content Watermarking and Distri-

bution phase in Category 2.

(IIb) D and the trusted hardware generate the watermark. The trusted hardware

verifies the watermark to be well-formed.

2. In this step, after verifying the request from C, D generates the watermark

together with TH. It is generated and given to D in such a way that D cannot

determine what the watermark is. The protocol message is

D ⇋ TH : {info, f(W)}AKE ,

where info denotes other information and can be an empty string.

70

3.5 Classification

The final step for both cases is:

(III) D produces a marked copy of the requested content and sends it to C.

3. This is identical to Step (II) of the Content Watermarking and Distribu-

tion phase in Category 1.

Identification and Dispute Resolution. This phase involves D and A. If the

watermark is generated by C together with TH then C is also involved. D identifies

C through the watermark detected from a found copy and proceeds to prove C’s act

of illegal content distribution to A. The steps and protocol messages are identical

to the Identification and Dispute Resolution phase of the previous categories,

except that instead of A interacting with either a WCA, TTP or C, A requires the

trusted hardware in C or D’s computing platform to reveal the client watermark.

The protocol messages are shown in Figure 3.9.

3

D {true, false} ← fWM ():

D → A : After

content

distribution
A ⇀↽ TH {watermark info}

AKE
:

A {true, false} ← fWM ():

Identification and Dispute Resolution:

{
info, X̂, SIG

}

AKE

Figure 3.9: Protocols with TH – Identification and Dispute Resolution

3.5.5 Adding Anonymity and Unlinkability

In addition to providing the three main security requirements discussed in Sec-

tion 3.3.3, many protocols include the protection of client privacy. This was first

introduced by Pfitzmann and Waidner in [105]. Protocols with this additional prop-

erty may fall into any of the four main categories discussed above. Such protocols

can be found in [19, 24, 25, 26, 33, 39, 40, 53, 54, 74, 78, 85, 102, 103, 118, 123]. The

main mechanism for providing anonymity and unlinkability is, instead of communi-

cating with D based on the long term public keys, C communicates with D using

a set of temporary keys called pseudonyms. Similarly to the long term keys, these

pseudonyms are signed by the KC to prove their validity. These pseudonyms do not

contain identity information for C. Therefore, when C uses these pseudonyms to

71

3.5 Classification

request content from D, D will not know the real identity of C, but can verify that

such pseudonyms are valid based on the signatures of the KC. Protocols with this

property are discussed in Chapters 5, 7 and 8. In the following we present the three

phases (Figure 3.10).

C → KC {key2 , SIG}
AKE:

KC → C {info, SIG}
AKE:

Before

1

2

3

content

distribution

Content

distribution

After

content

distribution
A → KC {key2 , SIG}

AKE:

KC → A {IDC}AKE:

C → D :

Initial Setup:

Content Watermarking and Distribution:

Identification and Dispute Resolution:

{key∗, key2 , SIG}
AKE

Protocols

TTPs
without

Protocols

Online TTPs
with

Protocols

TH
with

Protocols

Offline TTPs
with

Protocols

TTPs
without

Protocols

TH
with

Protocols

TTPs
without

Protocols

TH
with

Protocols

Online TTPs
with

Protocols

Offline TTPs
with

Protocols

Online TTPs
with

Protocols

Offline TTPs
with

Figure 3.10: Protocols with Anonymity and Unlinkability

Initial Setup. This is the main phase that provides the required mechanism for

anonymity and unlinkability. It involves C, D and the KC. Its major difference from

other Initial Setup phases is that instead of just obtaining the KC’s signatures on

the long term public keys that contain C’s identity information, C further requests

another distinct signature on newly generated public keys that do not contain such

information. These new keys, together with the new signature, are known as the

pseudonyms. In the following we present the protocol steps:

(I-II) The first two steps are identical to Step (I) and Step (II) in the Initial

Setup phase in Category 1. In these two steps, C and D register with the KC.

The KC signs the public keys (key) of C and D.

(III) Anonymous certification of new randomly generated key pair by the KC.

3. The protocol message is

C → KC : {key2 , SIG}AKE .

72

3.5 Classification

C then generates a pseudonym key2, signs this key with his long term signing

key and sends the signature SIG together with key2 to the KC.

(IV)The KC sends signed key2 to C.

4. The protocol message is:

KC→ C : {info, SIG}AKE .

The KC verifies the client signature on key2, re-signs key2 and sends the sig-

nature SIG back to C.

Content Watermarking and Distribution. This is similar to the Content Wa-

termarking and Distribution phase in whichever category applies. The only dif-

ference is that C generates arbitrary keys (key∗). These keys are signed by C using

the private half of key2. So C uses key∗, instead of his authenticated long term keys

(key), to request content. This is shown as:

C → D : {key∗, key2 , SIG}AKE ,

where SIG contains a signature produced using key2 and a signature on key2 , which

is generated by the KC.

Identification and Dispute Resolution. This phase is similar to the Identi-

fication and Dispute Resolution phase in whichever category applies. The only

difference is the two extra protocol messages at the end of the process, as shown in

Figure 3.10:

A→ KC : {key2 , SIG}AKE ,

for A to request C’s identity information and

KC→ A : {IDC}AKE ,

where the KC retrieves and sends C’s identity information IDC to A. These are

required for A to identify C, since only the KC has the identity information.

73

3.5 Classification

3.5.6 Adding Payment and Fair Exchange

Payment. One other aspect that has not been studied before in existing protocols

is how to include a payment mechanism. Many protocols, such as [85] and [104],

include a purchase agreement as an integral part of the protocols, which implicitly

means that payment is involved, but do not provide details on how payment is

conducted.

Based on [127], we show in Figure 3.11 how this is possible by including a payment

infrastructure on top of a FaCT protocol. A payment mechanism is normally agreed

between C and D with their respective banks, entering into contractual relationships.

This can be performed before the Initial Setup phase of a FaCT protocol in

whichever category applies. With the payment infrastructure in place, a payment

token can be included as one of the messages in the communication between C

and D. Depending on the mechanism chosen, the payment token can mean, for

example, digital coins as in an electronic cash system such as NetCard [4], or credit

or debit card details of C [119]. It may also contain specific account details of the

parties involved. For example, from the e-payment protocol proposed by Zhang and

Markantonakis in [140], the payment token contains the amount a client should pay,

the distributor’s and the client’s bank details, both encrypted using the respective

bank’s public keys.

Although the inclusion of a payment mechanism may be seen as simple and straight-

forward, it brings out the issue of fair exchange between D and C.

D Bank

C Bank

D

C

Contractual relationship

Contractual relationship

Payment
system

relationship

Payment Infrastructure:

Figure 3.11: Payment Infrastructure

Fair Exchange. This is important since in the context of fair content tracing,

D and C do not trust each other. Thus when payment is included, in addition to

ensuring the other requirements, we must also ensure that D and C will exchange

the payment and content in a fair manner, which motivates the optional requirement

of fair exchange introduced in Section 3.3.3.

74

3.5 Classification

In order to fulfill this requirement, a FaCT protocol can be constructed based on ex-

isting well-established schemes such as the fair exchange scheme in [5] or concurrent

signature schemes in [22]. We also note that a FaCT protocol with fair exchange

may fall into any of the main categories of Section 3.5.

Assuming that C and D have agreed on a payment mechanism, we discuss a gen-

eral construction, based on the framework in [5], in the following. As shown in

Figure 3.12, the Initial Setup phase and the Identification and Dispute Re-

solution phase follow any of the FaCT protocol in whichever category applies.

{PAY , info}
AKE

Before

1

2

3

content

distribution

content

distribution

After

content

distribution

C → D :

Initial Setup:

Content Watermarking and Distribution:

Identification and Dispute Resolution:

Protocols

and Unlinkability
with Anonymity

Protocols

and Unlinkability
with Anonymity

Protocols

and Unlinkability
with Anonymity

{Paid/receipt, info}
AKEPA → I :

4

After

content

distribution

Dispute Resolution for Fair Exchange:

Online TTPs

Protocols

TTPs
without

Protocols
with

Protocols

TH
with

Protocols

Offline TTPs
with

Protocols

TTPs
without

Protocols

TH
with

Protocols

TTPs
without

Protocols

TH
with

{info, receipt , SIG}
AKEC → A :

{new content}
AKEA → C :

{PAY , info}
AKED → PA :

Online TTPs

Protocols
with

Protocols

Offline TTPs
with

Online TTPs

Protocols
with

Protocols

Offline TTPs
with

Figure 3.12: Protocols with Fair Exchange

Initial Setup. The protocol steps in this phase follow any of the protocol steps in

the Initial Setup phase of other categories. We remark that the role of the KC

and/or the special TTP might be played by the payment agent PA (i.e. C’s or D’s

banks or a payment gateway). This is because, since C and D need to register with

the PA to setup the payment infrastructure, the PA may also issue authenticated

keys to the client and the distributor or generate client watermarks.

Content Watermarking and Distribution. The protocol steps in this phase also

follow any of the protocol steps in the Content Watermarking and Distribution

phase of other categories. However, three extra messages must be included. This

is the payment information PAY of the client, which is sent with the request for

75

3.5 Classification

content when C starts the interaction with D. This PAY will allow D to receive the

correct amount of payment for the content given to C. In Figure 3.12, we show the

payment message as:

C → D : {PAY, info}AKE ,

where info may contain a signature on the payment information, but this may not

be necessary, for example, in the case of purchasing based on credit card details. We

note that this message can be included in the request for content message in any of

the protocols in other categories.

Upon receiving this payment information, D forwards it to the PA so that the PA

can process the payment and give D the correct amount of payment. This is shown

as:

D → PA : {PAY, info}AKE .

Another message is the payment receipt issued by the PA, whenever the correct

amount has been paid into D’s account. The payment receipt plays a crucial role in

resolving payment disputes between C and D. The payment receipt is shown as:

PA→ I : {receipt, info}AKE ,

where info may contain the signature on receipt produced by the PA and I denotes

either C or D.

Identification and Dispute Resolution. This phase is identical to the Iden-

tification and Dispute Resolution phase for the protocols in other categories,

as identifying and proving illegal content distribution are independent from the fair

exchange issue.

Dispute Resolution for Fair Exchange. This is the additional phase that ad-

dresses the issue when C does not receive content (or correct content), guaranteeing

fair exchange between C and D. The two main steps are (Figure 3.12):

C → A : {info, receipt , SIG}AKE ,

where C sends the received payment receipt together with other information to A

as evidence that C has paid for the said content, and:

A→ C : {new content}AKE ,

76

3.5 Classification

where A requests new content from D and forward it to C. We note that there is

no need for a payment dispute resolution process for D as D receives the payment

token before sending content to C, as shown in Figure 3.12. Hence if the payment

information is not correct, D halts the protocol without losing anything.

In Table 3.2, we summarise the main characteristics in each of the four categories,

while Table 3.3 summarises the additional features when privacy protection or fair

exchange (or both) are added.

Table 3.2: Main Characteristics of Existing FaCT Protocols
Category Existing Designs
Protocols without TTPs C generates watermark information.

Benefit: No special TTP.
Issue: Extra measure needed to prevent C
generating ill-formed watermarks.

Protocols with TTP generates watermark information.
online TTPs D or C contacts TTP during content distribution.

Benefit: Avoid the issue of ill-formed watermarks
since TTP generates them.
Issue: Central TTP must always be available.

Protocols with TTP generates watermark information.
offline TTPs D or C contacts TTP during initial setup.

Benefit: Avoid the need of a central TTP that
must always be available during content distribution.
Issue: Central TTP required during initial setup.

Protocols with TH Trusted hardware generates watermark information.
Benefit: No special TTP.
Suitable for distributed systems.
Issue: Extra hardware cost.

Table 3.3: Adding Privacy Protection, Payment and Fair Exchange
Requirements Existing Designs
Anonymity & Unlinkability C generates pseudonyms.
Fair Exchange C includes payment information.

An additional dispute resolution phase
for fair exchange.

Table 3.4 identifies protocols that will be discussed in the subsequent chapters based

on the four categories described above. In the table, Std. denotes protocols fulfilling

the three standard requirements of a FaCT protocol, while AU denotes anonymity

and unlinkability, FE denotes fair exchange and AU+FE denotes anonymity and

unlinkability and fair exchange. The protocols in italics are either existing protocols

that we cryptanalyse or new protocols that we propose.

77

3.6 Evaluation Criteria

Table 3.4: FaCT Protocols Discussed in Subsequent Chapters
Std. AU FE AU+FE Sec.

Protocols Pfitzman-Schunter 4.2
without Ibrahim-ElDin-Hegazy 4.3
TTPs Semi-Fair 4.4

Protocols Lei-Yu-Tsai-Chan 5.2
with Wu-Pang 5.3
online Ahmed-Sattar-Siyal-Yu 5.4
TTPs Fair Exchange 8.2

Protocols Memon-Wong 3.7
with Kuribayashi-Tanaka 6.2
offline Chameleon 6.3
TTPs Encryption-based

Protocols Fan-Chen-Sun 7.2
with TPM-DAA-based 7.3.2
TH TPM-PrivacyCA-based 7.3.3

3.6 Evaluation Criteria

In this section we present evaluation criteria for the analysis of FaCT protocols

based on our design framework. These target aspects of efficiency and can be used

to compare protocols that are proposed within one category, or indeed to compare

protocols in different categories. The criteria are assessed based on the processes

related to the generation of the final marked content by D and C, since this repre-

sents the most important (and generally most expensive) operation. The evaluation

criteria are presented as follows:

1. Bandwidth. The size of the encrypted marked content transmitted from D

to C affects the bandwidth required. For evaluation purposes, we assume that

the number of elements in content (or a watermark) is n and the size of each

element in content (or a watermark) is Z. We further denote the bit-length

of Z by |Z|. Based on [1], for example, a common value for |Z| is 16 to 32

bits. We also assume that the modulus of the asymmetric building blocks

(i.e. homomorphic encryption and digital signature schemes) is m, and its

bits-length is |m|. As stated in [51], a current practical value for |m| is 1024

bits.

2. Trusted Third Parties. The existence of a special TTP adds extra protocol

messages to the execution of a FaCT protocol compared to protocols that do

not require such a TTP.

78

3.6 Evaluation Criteria

3. Computation. This means the degree of computation that each party needs

to perform to produce the encrypted marked content. It relies on the per-

formance of the underlying building blocks, which consist of modular expo-

nentiation (E), modular multiplication (M), and modular addition (A). We

assume that E requires O(k3) bit operations, M requires O(k2) bit operations

and A requires O(k) bit operations. This is based on the basic bit operations

discussed in [79].

We further note that, based on the description provided in [84], a DES en-

cryption is at least 100 times faster than an RSA encryption. This increases

to 1000 or 10000 times in hardware, depending on different implementations.

Based on the benchmark of Crypto++ [31], which has been deployed in many

applications, AES with a 128 key requires an average 21 processor cycles per

byte, while RSA-1024 encryption requires 130000 processor cycles per opera-

tions. Assuming that each AES encryption processes 16 bytes, then an AES

encryption is nearly 400 times faster than an RSA-1024 encryption. We thus

assume, conservatively, that a symmetric encryption scheme is 100 times faster

than an asymmetric encryption scheme. By further assuming that computing

an asymmetric encryption as equivalent to a modular exponentiation, then

computing a symmetric encryption (S) is equivalent to E/100.

4. Storage. This means the amount of storage required by C and D to store their

respective key materials and the watermark information used for generating

and retrieving the encrypted marked content.

3.6.1 Brief Analysis of the Four Categories

Bandwidth. For all the categories, the bandwidth depends on the underlying

building blocks that are used to produce the encrypted marked content. For example,

although the size of each element of the original content may only be |Z| = 32, the

encrypted marked element of content may have size |m| = 1024 bits. This is due

to the use of homomorphic encryption to encrypt each element of content, as in the

Memon-Wong protocol (see Section 3.7) and other protocols discussed in subsequent

chapters.

Trusted Third Parties. If we compare the four categories discussed previously,

a protocol without trusted third parties is more efficient than the other three cate-

79

3.6 Evaluation Criteria

gories. This is because the protocols with TTPs or trusted hardware require at least

two extra protocol messages when D (or C) communicate with these TTPs or the

trusted hardware. However, the protocols with trusted hardware are more suitable

for distributed environments since there is no central TTP, as in the protocols with

online and offline TTPs. Nevertheless, extra hardware cost must be factored in. In

addition to the above, extra communication with the TTP is also required when

privacy protection and fair exchange are added as extra requirements. For privacy

protection, C needs to communicate with the TTP to obtain pseudonyms, while for

fair exchange, the parties involved need to communicate with a payment agent.

Computation. Similar to determining the required bandwidth, the computation

requirement of a FaCT protocol relies on the performance of the underlying building

blocks. For example, some protocols without trusted third parties, such as the

Pfitzmann-Schunter protocol (see Section 4.2), use zero-knowledge proof techniques

and asymmetric homomorphic bit commitment schemes. Compared to protocols in

other categories that use asymmetric homomorphic encryption schemes, using zero-

knowledge proof techniques requires more computation and hence these protocols

are less efficient. More recent proposals, such as the Wu-Pang protocol, with an

online trusted third party, and our protocol based on Chameleon Encryption with

an offline trusted third party, use symmetric building blocks. Thus these protocols

are more efficient than the conventional ones that use asymmetric homomorphic

schemes. These two protocols are described in Sections 5.3 and 6.3 respectively.

Storage. The storage size required for the key materials and watermark information

also depends on the underlying building blocks. For example, if the key materials

are the public and private keys of an asymmetric homomorphic encryption scheme,

then the required storage size would be 2|m|. The size of storage for the watermark

information depends on whether a watermark or an encrypted watermark is stored.

Also, depending on the underlying category, either C or D, or the TTP store the

watermark information. For example, in the protocol without trusted third parties,

C generates the client watermark. Hence C needs to store the watermark since,

when there is a dispute, he will be requested to reveal the watermark. Using the

previous notation, the size of the watermark is n|Z|. This is also the case when

trusted hardware resides on C’s computing platform for a protocol with trusted

hardware.

80

3.7 An Example: The Memon-Wong Protocol

In contrast, in the categories that involve online and offline trusted third parties,

either D or the TTP stores the watermark information. The watermark information

stored by D is typically the encrypted watermark, since D should not know the

watermark as described in Section 2.2. Hence if the watermark is encrypted using an

asymmetric homomorphic scheme as in the Memon-Wong Protocol (see Section 3.7),

then the storage size is n|m|, which is much larger than n|Z|. This is also the case

when trusted hardware resides in D’s computing platform for a protocol with trusted

hardware.

Table 3.5 provides a summary of this brief analysis, where AU+FE denotes the

addition of privacy protection and fair exchange.

Table 3.5: Brief Evaluation of the Existing FaCT Protocols

Category Criteria

Protocols Bandwidth, computation & storage depends on the building blocks.
without TTPs No TTP: no extra communication.

C stores watermark information.
Protocols with Bandwidth, computation & storage depends on the building blocks.
online TTPs TTP: At least two extra communications during

content distribution.
D or TTP stores watermark information.

Protocols with Similar to protocols with online TTPs except that
offline TTPs the two extra communications happen during initial setup.
Protocols with Bandwidth, computation & storage depends on the building blocks.
TH TH: At least two extra communications with TH.

Hardware implementation cost.
D or C stores watermark information.

AU+FE Extra communication with TTP to obtain pseudonym or
to ensure fair exchange.

3.7 An Example: The Memon-Wong Protocol

We now illustrate the use of the framework to describe the Memon and Wong (MW)

FaCT protocol from [94]. This is one of the earliest proposals. The protocol is a

protocol with offline trusted third parties.

Fundamentals. It involves five parties. These are D, C, the WCA, the CA and

A. The WCA, CA and A are fully trusted and the protocol fulfills the three specific

requirements of a FaCT protocol.

81

3.7 An Example: The Memon-Wong Protocol

Environment. The MW protocol implicitly assumes that both D and C have ample

computing resources. This is based on the observation that both D and C need

many computations of homomorphic encryption in order to embed the watermark

into content and retrieve the marked content. It also implicitly assumes the existence

of public key and secure communication support. The WCA is a trusted third party

that generates client watermarks. The underlying building blocks required are digital

watermarking schemes, the original RSA encryption scheme (Section 2.3.2), the

spread spectrum watermarking scheme (Section 2.3.1) and digital signature schemes.

We note that most of the more recent protocols advocate the use of the Paillier

encryption scheme (Section 2.3.2) instead of the original RSA scheme due to the

Paillier scheme being semantically secure. This is due to the deterministic nature

of the RSA scheme as described in Section 2.3.2. Table 3.6 summarises the design

framework. As can be observed, we have not included in the table the threats as

discussed in Section 3.3.2. We reason that the inclusion of security properties are

suffice to reflect both the underlying threats and the properties of the protocol. This

also applies to our protocol discussions in the subsequent chapters. In the following

we describe the three phases of the protocol.

Table 3.6: The Design Framework of the MW Protocol
Fundamentals

Parties Involved C, D, CA, WCA, A
Trust Assumptions CA, WCA, A are fully trusted
Security Properties Traceability (TR), Framing resistance (FR),

Non-repudiation of redistribution (NR)

Environment

Comp. Resources Implicitly assumed D and C have ample resources
Sec. comm. Support Required
Pub. Key Support Required
TTPs offline TTP (WCA)
Building Blocks Digital watermarking scheme,

homomorphic encryption scheme
and digital signature scheme

Initial Setup. In this phase both D and C register with the CA and obtain

signatures on their public keys. C further requests a watermark from the WCA.

Figure 3.13 illustrates the protocol messages. We describe the protocol steps as

follows:

(I) C and D register with the CA to obtain authenticated public keys.

82

3.7 An Example: The Memon-Wong Protocol

WCA → C

C → WCA
{

[W]HEhekC
, [[W]HEhekC

]SIGsskWCA

}

AKE

{Request watermark}
AKE:

:

Before

1

content

C&D → CA {Request authenticated keys}
AKE:

distribution

Initial Setup:

CA → C

{

[hekC , pvkC , IDC]SIGsskCA

}

AKE
:

CA → D :
{

[hekD, pvkD, IDD]SIGsskCA

}

AKE

Figure 3.13: MW Protocol – Initial Setup

1. C and D register with the CA by providing CA with their personal information

and their public keys.

(II) The CA generates and provides C and D with the authenticated public keys.

2. Upon verifying the identity information of C and D, the CA produces signa-

tures on the respective public keys provided by both parties and sends the

signatures to these parties. The signatures allow other parties to verify the

authenticity of the public keys.

(III) C requests a client watermark from the WCA.

3. With the possession of the authenticated public keys, C requests a watermark

W from the WCA by convincing the WCA that he is a legitimate user.

(IV) The WCA sends an encrypted client watermark to C.

4. the WCA, after verifying C as a valid client (such as through C’s public

keys and the signature generated by the CA), generates a watermark W =

(w1, . . . , wn). Next the WCA encrypts every element of W with a homomor-

phic encryption scheme using C’s public encryption key hekC :

[wi]HEhekC
1 ≤ i ≤ n.

We denote [W]HEhekC
= ([w1]HEhekC

, [w2]HEhekC
, . . . , [wn]HEhekC

).

5. Next, the WCA digitally signs the encrypted watermark [W]HEhekC
with his

signing key, resulting in a signature:

[[W]HEhekC
]SIGsskWCA

.

83

3.7 An Example: The Memon-Wong Protocol

Finally, the WCA sends [W]HEhekC
and [[W]HEhekC

]SIGsskWCA
to C. Clearly, C

can determine W by simply decrypting [W]HEhekC
. However, C can not replace

W with any other watermark since C does not have the private signing key to

generate the signature on this other watermark.

Content Watermarking and Distribution. This phase involves C and D for the

distribution of content. In constrast to the general construction described in Sec-

tion 3.5.2, there is no content agreement involved.

{

[X ′′]HEhekC

}

AKE

{

[W]HEhekC
, [[W]HEhekC

]SIGsskWCA

}

AKE

D → C

:

:

C → D

2

Content

distribution

Content Watermarking and Distribution:

Figure 3.14: MW Protocol – Content Watermarking and Distribution

The protocol steps are described in the following (Figure 3.14):

(I) C requests content and provides D with the encrypted watermark obtained from

the TTP.

1. C sends [W]HEhekC
and [[W]HEhekC

]SIGsskWCA
to D.

(II) D produces a marked copy of the requested content and sends it to C.

2. D verifies [[W]HEhekC
]SIGsskWCA

using the WCA verification key pvkWCA. If the

signature is valid, D generates a watermark V using a digital watermarking

scheme of his choice and embeds this watermark into the content X that C

wishes to purchase.

X ′ ← [X, V]EMBwmkV
.

This watermark V allows D to trace the content to C’s identity.

3. D encrypts every element of X ′ one-by-one with the same homomorphic en-

cryption scheme used by the WCA, using C’s public encryption key hekC .

After that, D permutes (or changes the order of) every encrypted element of

W). For example, given

[W]HEhekC
= ([w1]HEhekC

, [w2]HEhekC
, . . . , [wn]HEhekC

),

84

3.7 An Example: The Memon-Wong Protocol

D permutes the encrypted elements using a permutation q as:

q
(
[W]HEhekC

)
= ([wq(1)]HEhekC

, [wq(2)]HEhekC
, . . . , [wq(n)]HEhekC

).

Next D multiplies every encrypted element of X ′ with every permuted and

encrypted element of W . It is assumed that the underlying building blocks are

the RSA encryption scheme described in Figure 2.3 and the SS watermarking

scheme described in Figure 2.1:

[x′
i]HEhekC

· [1 + ρq(wi)]HEhekC

= [x′
i · (1 + ρq(wi))]HEhekC

= [x
′′

i]HEhekC





1 ≤ i ≤ n.

We denote [X ′′]HEhekC
= ([x

′′

1]HEhekC
, [x

′′

2]HEhekC
, . . . , [x

′′

n]HEhekC
). The multi-

plication of these elements effectively embeds the watermark q(W) into X ′,

resulting in an encrypted marked content [X ′′]HEhekC
. Clearly, it is q(W) that

is embedded instead of W . The reason for this is that C knows W , and it

will be trivial for him to remove the watermark if W is embedded. He can do

this by subtracting W from the marked content X ′′. Hence the permutation

is crucial for the security of the protocol.

4. After that, D sends [X ′′]HEhekC
to C.

5. Finally, C decrypts [X ′′]HEhekC
to recover the marked content X ′ using his

private decryption key hdkC .

Identification and Dispute Resolution. In this phase D proves to A that a

dishonest C illegally distributed copies of content. The protocol messages are shown

in Figure 3.15, and the following describes the protocol steps:

(I) D detects a watermark from the found copy of content in order to identify the

client that owns the content.

1. When an illegal copy of content X̂ is found, D runs the watermark detection

algorithm to try to detect watermark V :

{true, false} ← [X̂, V, X]DETwmk
.

If the detection algorithm returns true, then detection of V is successful and

D proceeds to identify C.

85

3.7 An Example: The Memon-Wong Protocol

(II) D proves to A that C illegally distributed copies of content.

2. Next, D proves to A the illegal act of C by providing evidence in the form of the

identity of C (based on the detection of V), found content X̂, marked content

X ′ and the signed and encrypted watermark [[W]HEhekC
]SIGsskWCA

, together

with the permutation q. C will be proved guilty if the permuted watermark

q(W) can be detected from X̂:

true← [X̂, q(W), X ′]DETwmk
.

Clearly, the WCA will need to store a copy of W , so that when disputes such

as the above occur, W can be retrieved to match q(W) and hence serve as

evidence to prove C has indeed illegally distributed this copy of content.

{true, false} ← [X̂, V, X]DETwmk

{Request watermark W}
AKE

{
IDC , X̂, [[W]HEhekC

]SIGsskWCA
, X ′, q

}

AKE

{W}
AKE

true← [X̂, q(W), X ′]DETwmk

D :

A→ WCA

:

:

D → A

:WCA → A

A :

3

After

content

distribution

Identification and Dispute Resolution:

Figure 3.15: MW Protocol – Identification and Dispute Resolution

3.7.1 Security

The MW protocol provides the three security requirements as follows:

Traceability. For every client, two watermarks V and W are generated to allow

tracing. The watermark V retrieved from a copy of content allows D to identify C,

while watermark W , which is not known to D, allows tracing of C by A when A is

provided with the necessary information.

Framing resistance. D cannot determine watermark W since it is encrypted with

C’s public encryption key. This means that it is not possible for D to frame C by

embedding the watermark W in any other content and distribute the marked copy

of this other content. However, as stated by Lei et al. [85], when an illegal copy

is found, it is possible for D to extract the watermark W , embed this watermark

86

3.7 An Example: The Memon-Wong Protocol

into another higher value content and thus frame C by illegally distributing this

higher value content. This is because there is no binding agreement that binds the

watermark with the exact content where this watermark is embedded. This issue is

known as the unbinding problem.

Non-repudiation of redistribution. If a copy of content X̂ is found, C cannot

claim that this copy is distributed by D since D has no knowledge of W and the final

marked copy. This is because D cannot decrypt the final encrypted marked content

[X ′′]HEhekC
given to C. More importantly, C cannot deny W being his watermark

since the encrypted W is signed by the trusted WCA, and only C is able to decrypt

[X ′′]HEhekC
.

3.7.2 Efficiency

Table 3.7 summarises the performance of the MW protocol.

Bandwidth. From Table 3.7, we see that the size of the encrypted marked content

[X ′′]HEhekC
transmitted from C to D is n|m|. This is due to the encryption and

watermarking of n elements of content based on the homomorphic encryption scheme

with modulus m, as described in the Content Watermarking and Distribution

phase.

Trusted Third Parties. The protocol also requires an offline TTP in the form

of a WCA. This means that during the Initial Setup phase, two extra protocol

messages are required for C to obtain the watermark from WCA, in addition to the

standard messages for acquiring authenticated keys.

Computation. C requires nE operations to decrypt the encrypted marked content

given by D. However, D needs to perform more computation. As can be observed in

the Content Watermarking and Distribution phase, D encrypts all n elements of

content (nE) and multiplies these encrypted elements with the encrypted watermark

provided by C (nM). This is to produce the final encrypted marked content. Before

this, D also embeds a watermark V into content for the purpose of later identifying

the owner of content (nA). Hence D needs to perform n(E + M + A) computations.

Storage. In the context of producing the encrypted marked content, C stores

the decryption and encryption keys of the homomorphic encryption scheme used

87

3.8 Summary

(2|m|). C also stores the watermark W , which has size n|Z|, instead of the encrypted

watermark, since C can decrypt it. D requires the encryption key of C (|m|), the

encrypted watermark provided by the WCA (n|m|) and the watermark V (n|Z|).

Table 3.7: Performance of the MW Protocol

Bandwidth TTP Computation1 Storage2

[X ′′]HEhekC
= n|m| offline WCA C: nE C: 2|m| + n|Z|

D: n(E + M + A) D: (n + 1)|m| + n|Z|
1

E=O(k3), M=O(k2), A=O(k)
2 |Z| < |m|

3.8 Summary

In this chapter we presented a framework that can be used to analyse FaCT pro-

tocols in a systematic manner. We first put forward our thoughts on why a design

framework is necessary. We then described the framework in detail, and proposed a

classification of existing FaCT protocols. Finally we used the Memon-Wong protocol

as an example to illustrate use of the framework.

88

Chapter 4

FaCT Protocols without

Trusted Third Parties

Contents

4.1 Overview . 90

4.2 The Pfitzmann-Schunter Protocol 91

4.2.1 Improvement Attempts by Kuribayashi and Tanaka 96

4.3 The Ibrahim-ElDin-Hegazy Protocols 96

4.3.1 The First Ibrahim-ElDin-Hegazy Protocol 98

4.3.2 The Second Ibrahim-ElDin-Hegazy Protocol 102

4.3.3 Flaws in the Protocols . 103

4.3.4 Williams-Treharne-Ho Analysis of the Protocols 107

4.3.5 Deng-Preneel Analysis of the Protocols 108

4.4 A Semi-Fair Content Tracing Protocol 109

4.5 Analysis . 114

4.5.1 Security . 114

4.5.2 Efficiency . 117

4.6 Summary . 119

This chapter examines FaCT protocols that do not require trusted third parties. We

describe two different approaches and discuss existing protocols based on these two

approaches. The first approach is more computationally intensive than the second

approach, but the second approach faces security issues. We examine these issues by

demonstrating design flaws in two recently proposed protocols. We further propose a

semi-fair protocol that is relatively efficient and does not face the issues but requires

a stronger trust assumption. We conclude that it is difficult to design an efficient

FaCT protocol without a trusted third party.

89

4.1 Overview

4.1 Overview

As described in Section 3.5.1, FaCT protocols without trusted third parties are

protocols that do not involve a WCA. The main characteristic of these protocols is

that the clients are responsible for generating their own watermarks. There are two

approaches:

• Approach I: C generates the watermark and proves to D that the watermark

is well-formed. This approach requires C to prove to D that the generated

watermark is of a certain structure. This is to prevent C from generating an

ill-formed watermark that can easily be removed from marked content at a

later stage. In the existing protocols, the proving process is performed based

on a zero-knowledge proof of knowledge that uses a homomorphic commitment

scheme (Section 2.3.6). The general idea is that C commits to the watermark

and sends the committed watermark to D. C then opens some of the commit-

ments selected by D to prove in zero-knowledge that the committed values are

of the structure required by D. If this is the case then D embeds the water-

mark into content using the committed watermark. This operation is identical

to watermarking in the encrypted domain, as described in Section 2.3.3. Hence

D does not know the watermark.

One general issue with this approach is the extra computation required to per-

form the zero-knowledge proof of knowledge. Protocols known as asymmetric

fingerprinting schemes and anonymous fingerprinting schemes [12, 19, 26, 39,

40, 78, 102, 103, 104, 105, 106, 118] use this approach.

• Approach II: C freely generates any watermark. The second approach, which

is proposed in more recent protocols [33, 53, 54, 65, 66, 107, 138, 139], lets C

generate the watermark without the need to convince D that the generated

watermark is well-formed. The mechanism is for C to generate and encrypt

the watermark with a homomorphic encryption scheme and send the encrypted

watermark to D. Next D embeds the watermark into content based on water-

marking in the encrypted domain.

We will discuss the Pfitzmann-Schunter protocol [104] in Section 4.2 as an example

of a protocol that represents approach I. This is because subsequent proposals using

90

4.2 The Pfitzmann-Schunter Protocol

this approach follow the same zero-knowledge techniques discussed in this protocol.

We also note the existence of a proposal by Kuribayashi and Tanaka [80] aimed at

improving the efficiency of protocols using this approach in Section 4.2.1. However,

this proposal has been found to contain flaws [136].

Approach II is simpler and is more efficient, but faces certain security issues. This

can be observed in the two protocols proposed by Ibrahim et al. [65, 66], which

we examine in Section 4.3. From our study of these two protocols, certain attacks

that we defined, and attacks defined by Williams, Treharne and Ho [134], can be

successful against these, and other protocols in this category.

In view of the issues concerning these two approaches, we suggest an alternative

approach that does not face the computational performance issue of approach I

and avoid the security issues of approach II. As we observe in Section 4.4, this new

approach requires a stronger trust assumption, where the distributor is trusted more

than the client. Hence it cannot be regarded as a standard FaCT protocol where

the distributor and the client are not trusted, but only a “semi-fair” one.

We conclude by observing that it seems to be hard to construct a secure and effi-

cient FaCT protocol without a special trusted third party. The same can be said

for constructing a FaCT protocol without any control mechanism that allows the

distributor to ensure that the watermark generated by the client is well-formed.

4.2 The Pfitzmann-Schunter Protocol

Pfitzmann and Schunter (PS) proposed a protocol known as an asymmetric finger-

printing scheme in [104].

Fundamentals. The PS protocol involves D, C, a CA and A. The CA is fully

trusted. It provides traceability, framing resistance and non-repudiation of redistri-

bution.

Environment. The PS protocol implicitly assumes that both D and C possess

ample computing resources since both of them need to conduct many rounds of

a zero-knowledge proof process and also compute homomorphic bit commitments.

It also requires a secure communication channel and public key support. As op-

91

4.2 The Pfitzmann-Schunter Protocol

posed to the MW protocol described in Section 3.7, there is no special trusted third

party in this protocol. The main building blocks are digital watermarking schemes,

zero-knowledge proof systems, homomorphic bit commitment schemes and digital

signature schemes. Table 4.1 states the design criteria of the PS protocol.

Table 4.1: The Design Framework of the PS Protocol
Fundamentals

Parties Involved C, D, CA, A
Trust Assumptions CA is fully trusted
Security Properties Traceability (TR), Framing resistance (FR),

Non-repudiation of redistribution (NR)

Environment

Comp. Resources Implicitly assumed D and C have ample resources
Sec. comm. Support Required
Pub. Key Support Required
TTPs No special TTP
Building Blocks Digital watermarking scheme,

homomorphic bit commitment scheme,
zero-knowledge (ZK) proof
and digital signature scheme

In the following we describe the three phases of the PS protocol.

Initial Setup. In this phase C and D obtain authenticated public keys the CA.

Figure 4.1 shows the protocol messages, and we describe the protocol steps below:

Before

1

content

C&D → CA {Request authenticated identity and keys}
AKE:

distribution

Initial Setup:

CA → C

{

[hekC , pvkC , IDC]SIGsskCA

}

AKE
:

CA → D :
{

[hekD, pvkD, IDD]SIGsskCA

}

AKE

Figure 4.1: PS Protocol – Initial Setup

(I) C and D register with the CA to obtain authenticated public keys.

1. C generates a key pair (pvkC , sskC) based on a digital signature scheme.

He also generates a key pair (hekC , hdkC) based on a homomorphic bit com-

mitment scheme. C sends the public verification key pvkC and the public

commitment key hekC to the CA. The same process is also followed by D.

(II) The CA generates and provides C and D with the authenticated key materials.

92

4.2 The Pfitzmann-Schunter Protocol

2. The CA, upon verifying the identity information provided by C and D, pro-

vides both parties with authenticated public keys. This means that digital

signatures are produced on these keys. These signatures can later be used by

C and D to prove the validity of their respective public keys to others.

Content Watermarking and Distribution. In this phase D produces marked

content and C receives the content. Figure 4.2 illustrates the protocol messages.

{

[W]COM hekC
,AGR, [[W]COM hekC

,AGR]SIGsskC

}

AKE

{seq no}
AKE

{

[X ′]COM hekC

}

AKE

{C proves to D in zero-knowledge that he knows IDC}AKE

D → C

:

:

C → D

C ↔ D :

:D → C

2

Content

distribution

Content Watermarking and Distribution:

Figure 4.2: PS Protocol – Content Watermarking and Distribution

Below we discuss the protocol steps:

(I) C requests content, generates a client watermark and approves a content agree-

ment with D.

1. For a first time client, D runs a place marks algorithm. This algorithm selects

a set of positions in the content (i.e. a black-and-white image) that are suitable

for watermark embedding For example, if the image contains pixel 1 to pixel

L, then these positions are a subset of these pixels (We remark that in current

watermarking techniques, embedding is generally performed under a transform

domain, such as the DCT as stated in Figure 2.1, instead of embedding in

pixels as in the case of the PS protocol). We represent the positions as X =

(x1, . . . , xn). In addition, D initialises an l1-bit length counter seq no to zero.

2. D sends seq no to C and increments seq no.

3. C randomly chooses a string ID proof ∈ {0, 1}l2 , where l2 represents the length

of the string. Then C sets his identity as IDC = (seq no, ID proof). We

further denote IDC = (id1, . . . , idl3), where l3 = l1 + l2. C encodes IDC into a

binary string W = (w1, . . . , wn) based on an encoding algorithm, for example,

the algorithm proposed by Boneh and Shaw in [15]. This is effectively the

watermark to be embedded into content. C then commits to the watermark

93

4.2 The Pfitzmann-Schunter Protocol

W , based on the homomorphic bit commitment scheme presented in Figure 2.8,

by committing to each element of the watermark as:

[wi]COM hekC
1 ≤ i ≤ n.

We denote [W]COM hekC
= ([w1]COM hekC

, . . . , [wn]COM hekC
). C also signs

[W]COM hekC
and a content agreement AGR that contains a description of the

content that C wishes to obtain. This results in a signature:

[[W]COM hekC
,AGR]SIGsskC

.

C sends [W]COM hekC
, AGR and [[W]COM hekC

,AGR]SIGsskC
to D.

4. C also proves in zero-knowledge that he knows IDC , where the first part of IDC

is seq no, and the second part is ID proof. To do this, C can open the first l1

commitments to reveal seq no. After that, C proves that the commitments on

the coding of ID proof contain a valid code that conform to the requirements of

the underlying coding algorithm. For example, if ID proof contains a number

of zeros and ones, then C arbitrarily generates a sequence of commitments

containing zeros and ones, and proves to D that he can map the commitments

of ID proof to this sequence of commitments. D can be assured that IDC

is well-formed after many rounds of the above process. More details on the

zero-knowledge proof process are provided by Pfitzmann and Schunter in [104].

(II) D produces a marked copy of the requested content and sends it to C.

5. D verifies [[W]COM hekC
,AGR]SIGsskC

. After that, D commits to each element

of the content X = (x1, . . . , xn) with the same homomorphic bit commitment

scheme used by C as:

[xi]COM hekC
1 ≤ i ≤ n.

We denote [X]COM hekC
= ([x1]COM hekC

, . . . , [xn]COM hekC
). Next, D generates

the marked copy of content by multiplying every element of [W]COM hekC
by

every element of [X]COM hekC
:

[xi]COM hekC
· [wi]COM hekC

= [xi ⊕ wi]COM hekC

= [x′
i]COM hekC





1 ≤ i ≤ n.

94

4.2 The Pfitzmann-Schunter Protocol

We represent the result of this multiplication (and embedding) as

[X ′]COM hekC
= ([x′

1]COM hekC
, [x′

2]COM hekC
, . . . , [x′

n]COM hekC
).

Finally, D sends [X ′]COM hekC
to C.

6. C decrypts [X ′]COM hekC
and obtains X ′ = (x1 ⊕ w1, . . . , xn ⊕ wn).

Identification and Dispute Resolution. In this phase, D determines from the

found copy of content the identity of a dishonest C who illegally distributed content.

D further proves this fact to A. This phase also involves C, since C is the only party

that knows the watermark. Figure 4.3 shows the protocol messages.

xi ⊕ wi ⊕ xi = wi, for 1 ≤ i ≤ n

{

W, [W]COM hekC
,AGR, [[W]COM hekC

,AGR]SIGsskC

}

AKE

{C proves to A in zero-knowledge that he is innocent}
AKE

seq no detected from wi?

:D

3

D → A :

After

content

distribution

A → C {watermark info?}
AKE:

C → A :

Identification and Dispute Resolution:

Figure 4.3: PS Protocol – Identification and Dispute Resolution

In the following we describe the protocol steps:

(I) D detects a watermark from the found copy of content in order to identify the

client that owns the content.

1. When an illegal copy of content X̂ = (x̂1, . . . , x̂n) is found, D uses the original

content X and the positions to extract the embedded watermark W . This can

be performed by bit-wise XORing (⊕) the original content X and the found

content X̂ at the positions to retrieve W . Mathematically, this is xi⊕wi⊕x̂i =

wi, for 1 ≤ i ≤ n, assuming xi = x̂i. If the first part of the decoded W matches

seq no then D can be sure that X̂ belongs to C.

(II) D proves to A that C illegally distributed copies of content.

2. Next, D proves to A the illegal act of C by providing evidence to A. These

are the extracted watermark W , the committed watermark [W]COM hekC
, the

agreement AGR and the client signature [[W]COM hekC
,AGR]SIGsskC

.

95

4.3 The Ibrahim-ElDin-Hegazy Protocols

3. A first verifies the validity of the signature [[W]COM hekC
,AGR]SIGsskC

. If this

signature is valid, arbiter A needs to verify that [W]COM hekC
is the commitment

of W . Since A cannot verify this without the help of C, A asks C to prove

his innocence. C can open his commitments and show that these are different

from the extracted W to demonstrate that he is innocent. If C does not want

to expose his identity string ID proof, he can use a zero-knowledge proof of

knowledge to show to arbiter A that at least one commitment in [W]COM hekC

is not the bit in W . C will be declared guilty if he fails in this proving process.

4.2.1 Improvement Attempts by Kuribayashi and Tanaka

In view of the relatively heavy computation required due to bit commitments and

zero-knowledge proofs, Kuribayashi and Tanaka [80] proposed a more efficient proto-

col. The proposed protocol modifies the process of the zero-knowledge proof so that

homomorphic bit commitment schemes can be replaced by the Okamoto-Uchiyama

homomorphic encryption scheme [97]. The improvement is twofold. Firstly, the

zero-knowledge proof is performed in two protocol messages instead of y rounds

of protocol messages between C and D, as required in the PS protocol. Secondly,

instead of committing the content and watermark bit-by-bit, the content and wa-

termark can be encrypted as integers using the Okamoto-Uchiyama scheme, hence

increasing the encryption rate. However, Wu [136] demonstrated that the proposal

by Kuribayashi and Tanaka is flawed and is not zero-knowledge, since D is able to

extract the hidden information. We will not discuss further the technical details

of the Kuribayashi and Tanaka proposal or Wu’s attacks. What we aim to high-

light here is that it seems to be difficult to design a secure and efficient protocol in

approach I without using zero-knowledge proof systems.

4.3 The Ibrahim-ElDin-Hegazy Protocols

Ibrahim, ElDin and Hegazy (IEH) proposed two protocols following approach II.

We denote these protocols by IEH-1 [65] and IEH-2 [66]. These protocols aimed

to improve existing protocols such as the MW protocol presented in Section 3.7 by

modifying the design and introducing new properties. One such modification is to

allow C to freely generate the watermark W . However, modification can come at

96

4.3 The Ibrahim-ElDin-Hegazy Protocols

the expense of existing safeguards. We will show that this is precisely the case for

these two protocols. This work was published in [111, 113].

Fundamentals. Both protocols involve C, D, a CA and A. The CA and A are

fully trusted. There is an additional party known as the reseller R in IEH-2, who

plays the role of a reselling agent that obtains content from D and provides this

content to C. Both protocols claimed to provide traceability, framing resistance and

non-repudiation of redistribution.

Environment. These protocols assume that C and D have ample computing re-

sources. They also rely on public key support. However, they do not assume secure

communication support, but rather depend on the construction of the protocols to

withstand attacks on the communication channel. The protocols do not require

any special trusted third party. The main building blocks are digital watermarking

schemes, homomorphic encryption schemes and digital signature schemes. Table 4.2

shows the design framework of the IEH protocols.

Table 4.2: The Design Framework of the IEH Protocols
Fundamentals

Parties Involved C, D, CA, A, (R)
Trust Assumptions CA and A are fully trusted
Security Properties Traceability (TR), Framing resistance (FR),

Non-repudiation of redistribution (NR)
Environment

Comp. Resources Implicitly assumed D and C have ample resources
Sec. comm. Support Depends on protocol design
Pub. Key Support Required
TTPs No special TTP
Building Blocks Digital watermarking scheme,

homomorphic encryption scheme
and digital signature scheme

In addition to the three security properties listed in Table 4.2, IEH-1 and IEH-2

further claimed to address the following “problems”:

• Conspiracy problem, which refers to the possibility for a distributor to conspire

with a third party (e.g. a WCA) in order to reveal the client’s watermark. By

revealing this watermark, it is then possible for the distributor to frame the

client by embedding the watermark into content and distributing copies of it.

• Unbinding problem, in which, given a found illegal marked content, the distrib-

97

4.3 The Ibrahim-ElDin-Hegazy Protocols

utor can extract the watermark, re-embed this watermark into a more valuable

content and accuse the client of illegally distributing copies of the found con-

tent and the more valuable content. This is possible when the watermark is

not bound to the content itself.

• Client’s participation in the dispute resolution problem. This issue refers to

the assumption that during dispute of illegal distribution, the distributor is

solely responsible for proving the guilt of the client to a third party, and the

client should not be required to participate in such a process.

• Man in the middle attack. This issue refers to the ability of an adversary to

insert and modify the messages in transmission, without either the distributor

or the client knowing that the communication channel has been compromised.

• Practice applicability problem. This issue refers to the need for the client to

contact not just the distributor, but also another party to obtain the content,

which is inconvenient for the client.

4.3.1 The First Ibrahim-ElDin-Hegazy Protocol

This protocol, IEH-1, is intended for the secure selling of digital content between D

and C. It involves four parties. These are D, C, the CA and A. The CA is a fully

trusted third party who provides public key support as described in Section 3.4.2.

In the following we describe the three phases of the protocol.

Initial Setup. This phase is similar to the Initial Setup phase of the PS pro-

tocol described in the previous section. Figure 4.4 shows the protocol messages

between D, C and the CA.

Before

1

contentCA → C CertsskCA
(IDC):

distribution

Initial Setup:

CA → D CertsskCA
(IDD):

C&D → CA Request authenticated keys:

Figure 4.4: IEH-1 – Initial Setup

The protocol steps are as follows:

(I) C and D register with the CA to obtain authenticated public keys.

98

4.3 The Ibrahim-ElDin-Hegazy Protocols

1. C and D generate signature key pairs (pvkC , sskC) and (pvkD, sskD) based on

a digital signature scheme, and encryption key pairs (hekC , hdkC) and (hekD,

hdkD) based on a homomorphic encryption scheme. The public keys pvkC ,

pvkD, hekC and hekD are sent to the CA.

(II) The CA generates and provides C and D with the authenticated key materials.

2. The CA signs the public verification and encryption keys of all parties involved

so that any parties using these keys can be sure that the keys are authentic.

The public keys and the generated signatures are published for public access

by all parties involved. These public keys and the signatures generated by the

CA, together with identity information, is known as the certificate Certssk (.).

Content Watermarking and Distribution. This is the main phase for content

purchase and watermarking. In brief, D embeds the watermark into content in the

encrypted domain and sends the encrypted marked content to C. We describe the

protocol steps in the following and the protocol messages are shown in Figure 4.5.

2

D → CA [[W]SIGsskC
]HEhekCA

,CertsskCA
(IDC):

Content

distribution

Content Watermarking and Distribution:

C → D [H(AGR)]SIGsskC
,[W]HEhekC

, [[W]SIGsskC
]HEhekCA

,:

[H(H(W),H(AGR))]SIGsskC
,CertsskCA

(IDC)

CA → D [[W]
HE

′

hekC

]SIGsskCA
:

D → C [[X ′′]HEhekC
]SIGsskD

,CertsskCA
(IDD):

Figure 4.5: IEH-1 – Content Watermarking and Distribution

(I) C requests content, generates a client watermark and approves a content agree-

ment with D.

1. C initiates the protocol by sending a purchase request to D.

2. D sends his certificate CertsskCA
(IDD) to C.

3. A purchase agreement AGR is approved between C and D. This agreement

states the rights, obligations and specifies content X.

99

4.3 The Ibrahim-ElDin-Hegazy Protocols

4. C generates hash value H(AGR). This hash value can be generated using a

cryptographic hash function H(.) such as SHA-2 [70] or RIPEMD-160 [37].

C then generates a signature [H(AGR)]SIGsskC
. This signature allows A to

confirm C’s purchase during a dispute.

5. C generates a watermark W and signs it as [W]SIGsskC
. This is further en-

crypted using CA’s encryption key as [[W]SIGsskC
]HEhekCA

. During a dispute,

D will send this encrypted object to CA so that C need not participate in the

dispute resolution phase.

6. C encrypts W , resulting in [W]HEhekC
.

7. C generates [H(H(W), H(AGR))]SIGsskC
. The purpose of this signature is to

bind W to AGR.

8. C sends the signature [H(AGR)]SIGsskC
, the encrypted watermark [W]HEhekC

,

the encrypted signature [[W]SIGsskC
]HEhekCA

, the signature binding the wa-

termark and the agreement [H(H(W), H(AGR))]SIGsskC
, and C’s certificate

CertsskCA
(IDC) to D.

(II) D produces a marked copy of the requested content and sends it to C.

9. D forwards the encrypted signature [[W]SIGsskC
]HEhekCA

and the client certifi-

cate CertsskCA
(IDC) to the CA. Next the CA decrypts the encrypted signature

[[W]SIGsskC
]HEhekCA

to obtain the signature [W]SIGsskC
, which is then verified

to obtain the watermark W . After that, the CA re-encrypts W with C’s en-

cryption key as [W]
HE

′

hekC

and signs it to obtain [[W]
HE

′

hekC

]SIGsskCA
. This

signature is sent to D. This is to prevent C from encrypting watermark W in

[W]HEhekC
while including a different watermark W

′

in [[W
′

]SIGsskC
]HEhekCA

.

10. When the CA’s message is received, D first verifies [[W]
HE

′

hekC

]SIGsskCA
. Next,

D generates the hash value H([W]HEhekC
) and the hash value H([W]

HE
′

hekC

).

These two hash values are compared and, if they are identical, then D continues

to run the protocol. If they are not identical, the protocol is halted.

11. D generates a unique watermark V and embeds it into content X. The com-

putation is:

X ′ ← [X, V]EMBwmkV
.

100

4.3 The Ibrahim-ElDin-Hegazy Protocols

12. D generates an encrypted marked content as follows, using the watermarking

in the encrypted domain scheme described in Section 2.3.3:

[x′
i]HEhekC

· [wi]HEhekC

= [x′
i ◦ wi]HEhekC

= [x
′′

i]HEhekC





1 ≤ i ≤ n,

where ◦ represents either modular addition, modular multiplication or bit-wise

XOR, depending on the underlying homomorphic encryption used. We denote

[X ′′]HEhekC
= ([x

′′

1]HEhekC
, [x

′′

2]HEhekC
, . . . , [x

′′

n]HEhekC
).

13. D stores in the database: V , AGR, [H(AGR)]SIGsskC
, [[W]SIGsskC

]HEhekCA
,

[H(H(W), H(AGR))]SIGsskC
and CertsskCA

(IDC).

14. D generates and sends the signature [[X ′′]HEhekC
]SIGsskD

and D’s certificate

CertsskCA
(IDD) to C.

15. C verifies [[X ′′]HEhekC
]SIGsskD

to retrieve [X ′′]HEhekC
and then decrypts it to

obtain X ′′.

Identification and Dispute Resolution. When an illegal copy X̂ is found, D

starts this phase to prove that a dishonest C distributed X̂. Figure 4.6 illustrates

the protocol messages and the protocol steps are described as follows:

3

D {true, false} ← [X̂, V, X]DETwmk
:

D → A CertsskCA
(IDC),[H(H(W),H(AGR))]SIGsskC

,: After

content

distribution

A→ CA [[W]SIGsskC
]HEhekCA

,CertsskCA
(IDA):

CA → A [[W]SIGsskC
]HEhekA

:

A {true, false} ← [X̂,W,X ′]DETwmk
:

Identification and Dispute Resolution:

[H(AGR)]SIGsskC
,V ,AGR, [[W]SIGsskC

]HEhekCA
,

X̂,X ′

verify [H(H(W),H(AGR))]SIGsskC

verify [H(AGR)]SIGsskC

Figure 4.6: IEH-1 – Identification and Dispute Resolution

(I) D detects a watermark from the found copy of content in order to identify the

client that owns the content.

1. D detects the watermark V from the illegal copy X̂ using a watermarking

detection algorithm corresponding to the embedding process. If V is detected,

101

4.3 The Ibrahim-ElDin-Hegazy Protocols

C’s certificate CertsskCA
(IDC), two signatures, [H(H(W), H(AGR))]SIGsskC

and [H(AGR)]SIGsskC
, the watermark V , the agreement AGR, the encrypted

signature [[W]SIGsskC
]HEhekCA

, the illegal copy X̂ and the marked content X ′

are sent to A.

(II) D proves to A that C illegally distributed copies of content.

2. A forwards the encrypted signature [[W]SIGsskC
]HEhekCA

and CertsskCA
(IDA)

to the CA. The CA decrypts [[W]SIGsskC
]HEhekCA

and re-encrypts the retrieved

signature, [W]SIGsskC
, with A’s encryption key, resulting in [[W]SIGsskC

]HEhekA
.

This encrypted object is sent back to A. Then A decrypts this encrypted

signature [[W]SIGsskC
]HEhekA

to retrieve [W]SIGsskC
and verifies it to obtain the

watermark W .

3. A detects the watermark W from the illegal copy X̂.

4. If the watermark W is detected, A verifies signature [H(AGR)]SIGsskC
based

on the agreement AGR provided by D. If the verification is successful, the

protocol continues. Otherwise it halts.

5. As the final step, A verifies signature [H(H(W), H(AGR))]SIGsskC
using the

watermark W and the agreement AGR given by D. If the verification is

successful, which proves C bought the content, then C is found guilty.

Figure 4.7 shows the flow diagram of all three phases of the protocol. It provides a

comparison of the original protocol flows with that of Figure 4.10, where we discuss

one of our attacks in Section 4.3.3.

4.3.2 The Second Ibrahim-ElDin-Hegazy Protocol

This protocol, IEH-2, is similar to the previous protocol except that it involves a

legitimate reseller R, who acts as an agent for D and sells content bought from D

to C. The main differences between this protocol and the previous one are:

• the creation of an object license OL by D to monitor the selling of content by

R. Each time R wants to sell content, D generates a new object license OL′

counting down the number of resells allowed.

102

4.3 The Ibrahim-ElDin-Hegazy Protocols

C CA

Request content

D

CertsskCA
(IDD)

CertsskCA
(IDC)

[H(AGR)]SIGsskC
,[W]HEhekC

, [[W]SIGsskC
]HEhekCA

,

[H(H(W), H(AGR))]SIGsskC
,CertsskCA

(IDC)

[[W]SIGsskC
]HEhekCA

[[W]
HE

′

hekC

]SIGsskCA
[[X′′]HEhekC

]SIGsskD
,CertsskCA

(IDD)

Request authenticated keys
Request authenticated keys

CertsskCA
(IDC)

CertsskCA
(IDD)

A

CertsskCA
(IDC),[H(H(W), H(AGR))]SIGsskC

,

[[W]SIGsskC
]HEhekCA

,CertsskCA
(IDA)

[[W]SIGsskC
]HEhekA

[H(AGR)]SIGsskC
,V ,AGR, [[W]SIGsskC

]HEhekCA
,X̂,X′

Figure 4.7: IEH-1 – Protocol Flows Diagram for All Three Phases

• Instead of sending messages to D, C sends messages to R, who then contacts

D.

We do not provide further details of this protocol since our analysis works on both

protocols in a similar way. The protocol is illustrated in Figure 4.8 and the flows

diagram in Figure 4.9. As can be observed, the protocol flows between D, the CA

and A are identical with IEH-1.

4.3.3 Flaws in the Protocols

In this section we analyse the two IEH protocols by demonstrating attacks that can

be mounted on them [111].

103

4.3 The Ibrahim-ElDin-Hegazy Protocols

Before

1

2

3

contentCA → C :

R→ C CertsskCA
(IDR):

D → CA [[W]SIGsskC
]HEhekCA

,CertsskCA
(IDC):

D {true, false} ← [X̂, V, X]DETwmk
:

D → A CertsskCA
(IDC),[H(H(W),H(AGR))]SIGsskC

,:

distribution

Content

distribution

After

content

distribution

A→ CA [[W]SIGsskC
]HEhekCA

,CertsskCA
(IDA):

CA → A [[W]SIGsskC
]HEhekA

:

A {true, false} ← [X̂,W,X ′]DETwmk
:

C → R request content:

Initial Setup:

Content Watermarking and Distribution:

Identification and Dispute Resolution:

CA → D :

C → R [H(AGR)]SIGsskC
,[W]HEhekC

, [[W]SIGsskC
]HEhekCA

,:

[H(H(W),H(AGR))]SIGsskC
,CertsskCA

(IDC)

CA → D [[W]
HE

′

hekC

]SIGsskCA
:

R→ C [[X ′′]HEhekC
]SIGsskD

,CertsskCA
(IDD):

[H(AGR)]SIGsskC
,V ,AGR, [[W]SIGsskC

]HEhekCA
,

X̂,X ′,[H(AGR)]SIGsskR
,CertsskCA

(IDR)

R→ D [H(AGR)]SIGsskC
,[W]HEhekC

, [[W]SIGsskC
]HEhekCA

,:

[H(H(W),H(AGR))]SIGsskC
,CertsskCA

(IDC)

[OL]SIGsskR
,[H(AGR)]SIGsskR

,CertsskCA
(IDR), AGR

D → R [[X ′′]HEhekC
]SIGsskD

,[[OL
′

]HEhekR
]SIGsskD

:

verify [H(H(W),H(AGR))]SIGsskC

verify [H(AGR)]SIGsskC

verify [H(AGR)]SIGsskR

CertsskCA
(IDC)

CertsskCA
(IDD)

C&D → CA Request authenticated keys:

Figure 4.8: IEH-2

Attack 1: Client-generate-watermark Attack on both protocols. The idea

behind this attack is for C to remove the watermark W from the marked content

X
′′

that C received from D. The attack will be successful on Ibrahim et al.’s

protocols since in these protocols C generates watermark W . In fact, such an attack

was mentioned by Memon and Wong [94], who recommended that C should not

generate watermark W due to the possibility of such an attack. This is the main

reason that the WCA is used in [94] to generate W . However, Ibrahim et al., in

an attempt to prevent the conspiracy problem as previously stated in Section 4.3,

removed the WCA without giving a solution as to how to prevent a dishonest C

from generating an ill-formed watermark.

Attack 2: Client-in-the-middle Attack on both protocols. The idea behind

this attack is for C to modify protocol messages and generate a different watermark

104

4.3 The Ibrahim-ElDin-Hegazy Protocols

C CA

Request content

D

CertsskCA
(IDR)

CertsskCA
(IDC)

[H(AGR)]SIGsskC
,[W]HEhekC

,

[H(H(W), H(AGR))]SIGsskC
,

[[W]SIGsskC
]HEhekCA

[[W]
HE

′

hekC

]SIGsskCA[[X′′]HEhekC
]SIGsskD

,

Request authenticated keys
Request authenticated keys

CertsskCA
(IDC)

CertsskCA
(IDD)

A

CertsskCA
(IDC),[H(H(W), H(AGR))]SIGsskC

,

[[W]SIGsskC
]HEhekCA

,

[[W]SIGsskC
]HEhekA

[H(AGR)]SIGsskC
,V ,AGR, [[W]SIGsskC

]HEhekCA
,X̂,X′

CertsskCA
(IDA)

[H(AGR)]SIGsskR
,CertsskCA

(IDR),

[[X′′]HEhekC
]SIGsskD

,

[[W]SIGsskC
]HEhekCA

,

CertsskCA
(IDC)

CertsskCA
(IDD)

R

[H(AGR)]SIGsskC
,[W]HEhekC

,

[H(H(W), H(AGR))]SIGsskC
,

[[W]SIGsskC
]HEhekCA

,

CertsskCA
(IDC), [OL]SIGsskR

,

AGR

[[OL
′

]HEhekR
]SIGsskD

[H(AGR)]SIGsskR
,CertsskCA

(IDR)

Figure 4.9: IEH-2 – Protocol Flows Diagram for All Three Phases

for a different message, so that D will fail to prove C’s act of distributing content

illegally, even when C generates a proper watermark W .

In the following we demonstrate how the attack works on Ibrahim et al.’s pro-

tocols by modifying the protocol steps given in the Content Watermarking and

Distribution phase in Section 4.3.1, starting from Step 5. We note that the same

attack can be deployed against the second protocol. Figure 4.10 further illustrates

this attack on both protocols.

5
′

. Different from the original proposal, C generates three watermarks W1, W2 and

W3, instead of one watermark. C then generates two signatures, [W1]SIGsskC

and [W2]SIGsskC
. After that, C encrypts [W1]SIGsskC

and [W2]SIGsskC
, resulting

in [[W1]SIGsskC
]HEhekCA

and [[W2]SIGsskC
]HEhekCA

.

6
′

. C encrypts W2 as [W2]HEhekC
.

105

4.3 The Ibrahim-ElDin-Hegazy Protocols

7
′

. C generates signature [H(H(W3), H(AGR))]SIGsskC
. Note that watermark W3

is hashed and signed instead.

8
′

. C sends the signatures [H(AGR)]SIGsskC
and [H(H(W3), H(AGR))]SIGsskC

,

[W2]HEhekC
, [[W1]SIGsskC

]HEhekCA
, together with CertsskCA

(IDC) to D (to R

for Protocol II).

9
′

. When D sends [[W1]SIGsskC
]HEhekCA

to the CA, C intercepts the mes-

sage and sends [[W2]SIGsskC
]HEhekCA

instead. [[W2]SIGsskC
]HEhekCA

is de-

crypted by the CA to obtain the signature [W2]SIGsskC
, which is then veri-

fied to obtain W2. Next the CA re-encrypts W2 with C’s encryption key as

[W2]HE
′

hekC

and signs it to obtain [[W2]HE
′

hekC

]SIGsskCA
. This signature is sent

to D. To avoid C from being able to replace the message, D may sign the

message before sending it to the CA.

10
′

. D first verifies [[W2]HE
′

hekC

]SIGsskCA
to obtain [W2]HE

′

hekC

. Next, D compares

H([W2]HEhekC
) = H([W2]HE

′

hekC

). Since [W2]HE
′

hekC

is identical to [W2]HEhekC

given by C. The comparison will be true. D continues the protocol since both

hash values are identical.

12
′

. Subsequently the client watermark that is embedded into content is W2, which

is different from W1 in [[W1]SIGsskC
]HEhekCA

possessed by D.

Following from the above steps, recall from the Identification and Dispute Re-

solution phase that when an illegal content X̂ is found, one of the objects sent

by D to the CA is [[W1]SIGsskC
]HEhekCA

. For C to be found guilty, the CA retrieves

W1 from [[W1]SIGsskC
]HEhekCA

, signs it and re-encrypts it as [[W1]SIGsskC
]HEhekA

and

passes this new encrypted object to A. Upon receiving the encrypted object, A

decrypts and retrieves W1. Next A runs the detection algorithm, expecting to detect

W1 from X̂. However, due to the interception by C in Step 9
′

above, the watermark

that is embedded in this content is W2, instead of W1. Hence A will fail to detect

C’s watermark and will declare C innocent. We also note that the reason that this

attack can be deployed is due to the protocols’ introduction of Step 8 and Step 9 in

the Content Watermarking and Distribution phase in order to avoid the client’s

participation in the dispute resolution problem.

Furthermore, due to Step 5
′

and Step 7
′

, a third watermark W3 is used by C to

generate the signature [H(H(W3), H(AGR))]SIGsskC
. A will not be able to match

106

4.3 The Ibrahim-ElDin-Hegazy Protocols

the watermark W2 extracted from the illegal copy X̂ to the purchase agreement

based on this signature, and thus cannot be certain that C bought this content.

C CA

Request content

D

CertsskCA
(IDD) [or CertsskCA

(IDR)]

CertsskCA
(IDC)

C intercepts and replaces

[[W1]SIGsskC
]HEhekCA

⇒

[[W2]SIGsskC
]HEhekCA

[R]

[H(AGR)]SIGsskC
,[W2]HEhekC

, [[W1]SIGsskC
]HEhekCA

,

[H(H(W3), H(AGR))]SIGsskC
,CertsskCA

(IDC)

[[W2]SIGsskC
]HEhekCA

[[W2]
HE

′

hekC

]SIGsskCA
[[X′′]HEhekC

]SIGsskD
,CertsskCA

(IDD)

Figure 4.10: IEH Protocols: Attack 2

Attack 3: Distributor-CA Conspiracy Attack on Both Protocols. The

main idea behind this attack is based on the fact that the CA knows the client

watermark W , and essentially has similar responsibility to that of a WCA (which

generates the client’s watermark) in other protocols such as the protocol in [85].

This can be seen from Step 9 of the Content Watermarking and Distribution

phase. D sends the CA an encrypted signature [[W]SIGsskC
]HEhekCA

that contains

W , and the CA is tasked to retrieve the watermark W , re-encrypt it and sign it with

the CA’s signing key. Hence the CA can store a copy of W when retrieving it from

the signature, and then sends W to D. Thus the claim of avoiding the conspiracy

problem fails.

4.3.4 Williams-Treharne-Ho Analysis of the Protocols

Independently, Williams, Treharne and Ho [134] discussed another flaw in the IEH

protocols. Using formal analysis based on Communicating Sequential Processes

(CSP) [63], Williams et al. discovered an unbinding attack on the protocols. This

refutes Ibrahim et al.’s claim that their protocols do not have the unbinding problem

as discussed in Section 4.3. Following the example given in [134] and without going

into the technical details, the attack works as follows.

107

4.3 The Ibrahim-ElDin-Hegazy Protocols

C requests 1000 different contents from D. Instead of generating distinct watermarks

for each of the 1000 contents, C gives one identical watermark for D to embed into

all 1000 contents. In other words, all 1000 marked contents that are passed to C

have an identical watermark. C then generates many copies of these 1000 marked

contents and distributes these copies illegally. At a later stage, D may find any of

these illegal copies. However, as stated in [134], D is only able to prove that one

of these copies has been distributed illegally by C. This means D will not be able

to identify the particular content or prove the number of contents that have been

copied.

We note that Williams et al. also pointed out the attack where C generates two

different watermarks W2 and W3. These watermarks are used to avoid the claim

that C bought the content, where copies of content are distributed illegally (Step 5
′

and Step 7
′

in our Attack 2 of the protocols).

4.3.5 Deng-Preneel Analysis of the Protocols

Deng and Preneel [32] also pointed out a flaw in the IEH protocols that may occur

if the underlying homomorphic encryption scheme is probabilistic. In general, in

a probabilistic homomorphic encryption scheme, if a message is encrypted i times,

the resulting i encrypted messages are distinct with high probability. The Paillier

homomorphic encryption scheme (Figure 2.5) is one such scheme. From the Content

Watermarking and Distribution phase of IEH-1 (Section 4.3.1):

• In Step 9, the CA decrypts [[W]SIGsskC
]HEhekCA

given by D. The signature

[W]SIGsskC
obtained from the decryption is then verified to obtain the wa-

termark W . After that, the CA re-encrypts W with C’s encryption key as

[W]
HE

′

hekC

. It is signed to obtain [[W]
HE

′

hekC

]SIGsskCA
. This signature is sent

to D.

• In Step 10, D verifies the signature [[W]
HE

′

hekC

]SIGsskCA
. After that, D gener-

ates the hash value H([W]HEhekC
) and the hash value H([W]

HE
′

hekC

). Next D

continues to execute the protocol if and only if the two hash values are identical.

If a probabilistic homomorphic encryption scheme such as Paillier (Figure 2.5) is

used, then the resulting encryption in Step 9 by CA, [W]
HE

′

hekC

, will most probably

108

4.4 A Semi-Fair Content Tracing Protocol

be different from [W]HEhekC
that is given to D by C. The hash values of these

encrypted messages are most probably different and D will thus halt the execu-

tion of the protocol. To avoid this flaw, the protocols need to use deterministic

homomorphic encryption schemes, such as RSA (Figure 2.3). However, as stated

in [90, Section 2.2], using a deterministic homomorphic encryption scheme for wa-

termark embedding in the encrypted domain is not secure. Deng and Preneel also

independently pointed out Attack 1 presented in Section 4.3.3.

4.4 A Semi-Fair Content Tracing Protocol

As we have previously discussed, the PS protocol requires C to prove that the

watermark is well-formed. But in doing so, additional computations are required.

The IEH Protocols eliminate such a requirement by letting C generate any text

string to represent the watermark. However, the IEH protocols can be exploited by

C and are insecure, as we have demonstrated in the previous section.

In this section we suggest a possible way of allowing C to freely generate a watermark

without facing the same issues as the IEH protocols, if we assume that D is trusted

more than C. In our proposal, C will want to generate a well-formed watermark.

If C generates an ill-formed watermark that can easily be removed from a marked

content, and A cannot detect this watermark from the found copy of content, then A

still assumes that C is guilty based on other evidence (e.g. C’s signatures) provided

by D. In this sense we say that D is assumed to be semi-trusted. By this we

mean that when a watermark is ill-formed, A trusts that D will not falsely accuse

C of illegal content distribution by releasing a copy of content that can be linked

to C, but without C’s watermark. This is based on the assumption that D has no

knowledge of whether a watermark is ill-formed or well-formed (i.e. the watermark

is encrypted), and that D will not coax C into generating an ill-formed watermark.

Fundamentals. The protocol involves C, D, a CA and A. The CA and A are fully

trusted. Contrary to the trust assumptions of the PS and IEH protocols, D is semi-

trusted. This protocol provides traceability, framing resistance and non-repudiation

of redistribution.

Environment. Similar to the PS and IEH protocols, this protocol assumes that

109

4.4 A Semi-Fair Content Tracing Protocol

C and D have ample computing resources. We also assume that the execution of

the protocol is carried out using a secure communication channel and with public

key support. There is no special trusted third party and the main building blocks

are digital watermarking schemes, homomorphic encryption schemes and digital

signature schemes. Table 4.3 shows the design framework of the protocol. In the

following we describe the three phases of the protocol.

Table 4.3: The Design Framework of the Semi-Fair Protocol
Fundamentals

Parties Involved C, D, CA, A
Trust Assumptions CA and A are fully trusted

D is semi-trusted
Security Properties Traceability (TR), Framing resistance (FR),

Non-repudiation of redistribution (NR)

Environment

Comp. Resources Assume D and C have ample resources
Sec. comm. Support Required
Pub. Key Support Required
TTPs No special TTP
Building Blocks Digital watermarking scheme,

homomorphic encryption scheme
and digital signature scheme

Initial Setup. This follows the Initial Setup phase of the PS protocol. The

main purpose is for C and D to obtain authenticated information from a CA on

their public keys. At this point we only show the protocol messages in Figure 4.11,

without describing the protocol steps.

Before

1

content

C&D → CA {Request authenticated keys}
AKE:

distribution

Initial Setup:

CA → C

{

[hekC , pvkC , IDC]SIGsskCA

}

AKE
:

CA → D :
{

[hekD, pvkD, IDD]SIGsskCA

}

AKE

Figure 4.11: Semi-Fair Protocol – Initial Setup

Content Watermarking and Distribution. In this phase C requests content and

D embeds a watermark into content in the encrypted domain. The encrypted marked

content is then sent to C. Figure 4.12 shows the protocol messages.

The protocol steps are described below:

(I) C requests content, generates a client watermark and approves a content agree-

110

4.4 A Semi-Fair Content Tracing Protocol

2

[W]HEhekC
, [[W]HEhekC

,AGR]SIGsskC
}AKE

D → C

{

[X ′′]HEhekC
, [[X ′′]HEhekC

]SIGsskD

}

AKE

:

Content

distribution

C → D {hekC , pvkC ,AGR, [hekC , pvkC , IDC]SIGsskCA
:

Content Watermarking and Distribution:

Figure 4.12: Semi-Fair Protocol – Content Watermarking and Distribution

ment with D.

1. C generates watermark W , encrypts it with a homomorphic encryption scheme

using his encryption key hekC as

[W]HEhekC
.

C then signs it together with a content agreement AGR using his signing key

sskC as

[[W]HEhekC
,AGR]SIGsskC

.

After that, C sends the encrypted watermark, the signature and C’s public

keys, together with the CA’s signature on these keys, to D.

(II) D produces a marked copy of the requested content and sends it to C.

2. D verifies the signature and generates a watermark V . After that, D embeds

V into content X, resulting in

X ′ ← [X, V]EMBwmkV
.

The watermark V is to enable D to trace and identify the owner of found

illegal copies of content. D encrypts every element of X ′ one-by-one with

a homomorphic encryption scheme, using C’s public encryption key hekC .

Similar to the MW protocol described in Section 3.7, D also permutes every

encrypted element of W based on a permutation q. For example, given

[W]HEhekC
= ([w1]HEhekC

, [w2]HEhekC
, . . . , [wn]HEhekC

),

D permutes the elements as:

q
(
[W]HEhekC

)
= ([wq(1)]HEhekC

, [wq(2)]HEhekC
, . . . , [wq(n)]HEhekC

).

111

4.4 A Semi-Fair Content Tracing Protocol

Next, D generates an encrypted marked content as follows:

[x′
i]HEhekC

· [q(wi)]HEhekC

= [x′
i ◦ q(wi)]HEhekC

= [x
′′

i]HEhekC





1 ≤ i ≤ n,

where ◦ represents either modular addition, modular multiplication or bit-wise

XOR depending on the underlying homomorphic encryption used. We denote

[X ′′]HEhekC
= ([x

′′

1]HEhekC
, [x

′′

2]HEhekC
, . . . , [x

′′

n]HEhekC
).

D signs [X ′′]HEhekC
as:

[[X ′′]HEhekC
]SIGsskD

,

and sends [X ′′]HEhekC
, [[X ′′]HEhekC

]SIGsskD
to C.

3. C verifies [[X ′′]HEhekC
]SIGsskD

and decrypts [X ′′]HEhekC
.

Identification and Dispute Resolution. In this phase, D identifies C from a

found copy of content and proves to A that C has illegally distributed a copy of the

content. Figure 4.13 illustrates the protocol messages and the following describes

the protocol steps:

{true, false} ← [X̂, V, X]DETwmk

{true, false} ← [X̂, q(W), X ′]DETwmk

:D → A

3

D : {
X̂,X ′, q, [W]HEhekC

,AGR, [[W]HEhekC
,AGR]SIGsskC

}

AKE

After

content

distribution

A→ C {decryption key?}
AKE:

C → A {hdkC}AKE:

A :

Identification and Dispute Resolution:

If false, check [[W]HEhekC
,AGR]SIGsskC

Figure 4.13: Semi-Fair Protocol – Identification and Dispute Resolution

(I) D detects a watermark from the found copy of content in order to identify the

client that owns the content.

1. Upon finding an illegal copy X̂, D identifies the client by detecting the presence

of V in X̂:

{true, false} ← [X̂, V, X]DETwmk
.

If the detection algorithm returns true, then detection of V is successful.

112

4.4 A Semi-Fair Content Tracing Protocol

(II) D proves to A that C illegally distributed copies of content.

2. D provides A with AGR, the signature [[W]HEhekC
,AGR]SIGsskC

, the found

copy X̂, the marked copy X ′, the permutation q and the encrypted watermark

[W]HEhekC
.

3. A asks C for C’s private key hdkC . A then decrypts [W]HEhekC
and detects

whether W is present in X̂. If W is detectable, then C is said to have illegally

distributed content X̂.

4. C may generate an ill-formed watermark and remove the watermark from the

received marked content. In such a case, A will fail to detect W from X̂, which

is the main reason for the PS protocol using a zero-knowledge proof system. It

is also one of the reasons that the IEH Protocols are susceptible to Attack 1

as described in Section 4.3.3. In order to avoid this issue, we place more trust

on the distributor in the following sense:

If A fails to detect W from the illegal copy X̂, given that the client’s signature

[[W]HEhekC
,AGR]SIGsskC

is valid, A checks if W is an ill-formed watermark

(with the assumption that a list of ill-formed watermarks is defined). If it

is, then the client is still guilty of illegal distribution. This is based on the

argument that C is assumed to have removed the weak watermark W before

distributing copies of it.

In summary, what we suggest is:

• Stronger assumption. The protocol is semi-fair. Whenever there is a dispute,

D is trusted more than C.

• Client signs the encrypted watermark. The signature on the encrypted water-

mark by C at the beginning of the Content Watermarking and Distribu-

tion phase plays a key role for D and A to ascertain whether W is indeed

generated by C.

• Most importantly, in the identification and dispute resolution phase,

if the client watermark W cannot be detected, A proceeds to check whether W

is an ill-formed watermark. This forces C to want to generate a well-formed

watermark.

113

4.5 Analysis

4.5 Analysis

In this section we analyse the security and efficiency of the protocols that we dis-

cussed.

4.5.1 Security

In this section we provide a brief security analysis on the protocols that we have

described. We begin by analysing the framework and secure communication issues

in the IEH protocols.

Design Framework. One of the main reasons that the IEH protocols discussed in

Section 4.3 fail to fulfill the claimed security requirements is their lack of a proper

framework. This particularly affects the role and trust assumptions on the third

party and the definition of the security requirements. We examine them in the

following:

• In their protocols, Ibrahim et al. state that the CA is fully trusted. This means

that the CA will not conspire with D. However, we put forward Attack 3

(Section 4.3.3), where the CA can reveal the watermark to D, for two reasons:

– The first is that the CA in the IEH protocols processes the watermark,

which means that the CA has access to the watermark and can store the

watermark. The CA thus plays a similar role to a WCA, except that the

CA does not generate the watermark. Hence Ibrahim et al. combined

two parties, the CA and WCA, into one entity and denoted them as the

CA.

– Following from the first reason, the claims by Ibrahim et al. [65, 66] that

protocols that deploy the CA and WCA as separate entities, such as the

Memon-Wong protocol discussed in Section 3.7, face conspiracy problems

due to the possibility of WCA conspires with D is rather controversial.

This is because Ibrahim et al. assume that their CA with the role of

the WCA is fully trusted but assume otherwise for the WCA in other

protocols.

114

4.5 Analysis

Ultimately, this brings us to conclude that if we properly define the roles and

trust assumptions on the trusted third parties (i.e. the CA and WCA), the

conspiracy problem of Section 4.3 may not be an issue at all.

• As for the additional “problems” (Section 4.3), stated by Ibrahim et al., it can

be observed that these are rather disparate in nature. If we examine them

more carefully, we see that the conspiracy problem and the unbinding problem

are attacks on the main property known as framing resistance, defined in Sec-

tion 3.3.3. Similarly, the man in the middle attack relates to an attack (rather

than property) on the communication channel. However the client’s partici-

pation in the dispute resolution problem and the practice applicability problem

actually reflect the application considerations of a FaCT protocol. This con-

fusingly merges the security requirements required by such a protocol with the

practical considerations and operations in an instantiation of it. Ambiguity in

this leads to attacks of the type that we have described.

We further note that other protocols that follow approach II, such as the protocols

proposed in [54, 139], also discuss the conspiracy problems. Again, similar to our

discussion above, the claims made concerning these protocols are controversial due

to the lack of proper definitions and trust assumptions on the third parties deployed.

In summary, the lessons here are to make explicit the trust assumptions on the

TTPs and to differentiate between requirements and other “problems”. This has

been provided in our design framework in Section 3.2.

Secure Communication. In Attack 2 on the IEH protocols we see that C can

intercept and replace messages transmitted between D and the CA. This happens

mainly because the protocols fail to safeguard the communication between D and the

CA, although much care has been taken to ensure secure transmission between C and

D. To avoid this pitfall, we think a standard and safer approach should be followed.

This is to secure the communications between all involved parties based on well-

established protocols in the literatures [8, 16, 73], or based on a standard protocol

such as SSL/TLS [36]. This is the secure communication support of Section 3.4.2.

We can then construct the main part of a FaCT protocol given this support. In

summary, a secure communication channel should be provided using well-established

methods.

115

4.5 Analysis

Traceability. This security property is assured for the three discussed protocols

since D can trace content to the identity of a client based on seq no in the PS proto-

col. Similarly, D can trace content to the identity of a client based on the watermark

V embedded into content in the IEH protocols and the Semi-Fair protocol.

Framing Resistance. The PS protocol and the Semi-Fair protocol provide this

property through the embedding of watermark W into content, without D knowing

what the watermark is and the final marked copy given to C. Since D cannot

determine W and does not know the final marked copy, the issue of framing does

not exist.

Similarly, D cannot accuse C of redistributing a different content instead of the

found copy by transferring the watermark from the found copy to this other content.

This is because a signature ([[W]COM hekC
,AGR]SIGsskC

or [[W]HEhekC
,AGR]SIGsskC

)

that binds the watermark and a content agreement, is produced by C. This content

agreement specifies the exact content required by C. In other words, D will need

to produce a new signature that binds the extracted watermark to the higher value

content for the accusation to be successful. Assuming that the underlying signature

scheme is secure, such operation by D is computationally infeasible. The IEH pro-

tocols do not provide this property since they are susceptible to the three attacks

that we demonstrated in Section 4.3.3.

Non-repudiation of Redistribution. The PS protocol and the Semi-Fair proto-

col provide this property through the signatures produced by C. These signatures

are [[W]COM hekC
,AGR]SIGsskC

and [[W]HEhekC
,AGR]SIGsskC

, and they allow A to

verify that C owns the found copy by checking the agreement AGR. C cannot deny

distributing the found copy when A detected the watermark W . The IEH protocols

do not provide this property since Attack 2 presented in Section 4.3.3 is possible.

Summary. It is tempting to design protocols without a special trusted third party

using zero-knowledge proof systems, so that a protocol can be more efficient and

involve only straightforward communication between C and D. This has been done

in the IEH protocols and other protocols proposed in [33, 34, 54, 139]. However, from

Attack 1 presented in Section 4.3.3, we observe that it is possible for a malicious C

to defeat these protocols since C can freely choose any text string as the watermark.

In this case, framing resistance and non-repudiation of redistribution cannot be

assured if the client watermark W can be exploited by the client. As we have

116

4.5 Analysis

presented in the Semi-Fair protocol in Section 4.4, one alternative is to assume more

trust on the distributor. However with such an assumption, the protocol cannot be

considered as fair to the client. In summary, unless new and simpler mechanisms are

found, designing protocols that are secure where the watermark is generated by the

client is hard. A potential new and simpler mechanism will be a secure and more

efficient zero-knowledge proof system (as attempted by Kuribayashi and Tanaka,

discussed in Section 4.2.1).

We summarise the security analysis of the three discussed protocols in Table 5.4. In

the table, TR denotes traceability, FR denotes framing resistance and NR denotes

non-repudiation of redistribution.

Table 4.4: Summary of the Security Analysis
Protocols TR FR NR Conditions
PS X X X Homomorphic bit commitment scheme.
IEH X × × Deterministic homomorphic encryption.

Susceptible to attacks I, II, III (Section 4.3.3)
and William-Treharne-Ho attack.

SF X X X Stronger assumption: D semi-trusted.

4.5.2 Efficiency

In this section we compare the efficiency of the discussed protocols. A summary is

shown in Table 4.5.

Bandwidth. Assuming the content has n elements, all three protocols require n|m|
bits to transmit the encrypted marked content from D to C. This is because the

size of each encrypted element of content is |m|, following the modulus m of the

underlying homomorphic encryption scheme. The PS protocol further requires y

extra protocol messages being transmitted between C and D. This is assuming that

C and D run y rounds of the zero-knowledge proof process so that D is convinced

that the watermark generated by C is well-formed.

Trusted Third Parties. Since all protocols do not require a special trusted third

party for producing a client watermark, there is no extra communication overhead,

compared to the MW protocol discussed in Section 3.7 and other categories of pro-

tocols that we will discuss in Chapters 5 and 6.

117

4.5 Analysis

Computation. For the PS protocol, C needs to perform ny modular exponentia-

tions (nyE). This is assuming that C executes y rounds of protocol messages between

D and C, and in each round computes n commitments to prove in zero-knowledge

that the watermark is well-formed. C also performs n modular exponentiations (nE)

to open the committed marked content. This is assuming that each commitment, or

opening the commitment, of the underlying homomorphic bit commitment scheme

requires one modular exponentiation. D needs to perform n modular exponentia-

tions (nE) to commit to the content and n modular multiplication (M) to multiply

each committed element of content by each committed element of the watermark, so

that the watermark is embedded into content in the encrypted domain. Altogether,

C performs n(y + 1)E computations and D performs n(E + M) computations.

The IEH protocols and the Semi-Fair protocol have similar computation require-

ments for C and D. In this case, D needs to compute n modular exponentiations

(nE) and n modular multiplications (nM) to encrypt content and embed the water-

mark W into content. D also computes n additions (nA) to embed the watermark

V into content. C, on the other hand, needs to compute n modular exponentiations

(nE) to encrypt the watermark and another n modular exponentiations to decrypt

the marked content. So D requires n(E + M + A) computations, while C requires

2nE computations.

Storage. For the purpose of producing the encrypted marked content, all protocols

require D to store the homomorphic encryption (or commitment) public key of C.

The key size is |m|. D also requires the encrypted (or committed) watermark with

size n|m| bits and the watermark V (or seq no), for which we assume both have n|Z|
bits. For C, the required storage is 2|m| bits to store the homomorphic encryption

and decryption keys. C also stores the watermark W with size n|Z|. So D stores

n|m| + |m| + n|Z| bits, while C stores 2|m| + n|Z| bits.

Summary. All three protocols have similar bandwidth, computation and storage

requirements, except that the PS protocol requires more computation due to the

zero-knowledge proof of knowledge between C and D.

118

4.6 Summary

Table 4.5: Efficiency Comparisons between Protocols without Trusted Third Parties

Pro. Bandwidth TTP Computation1 Storage2

PS [X ′′]COM hekC
= n|m| No TTP C: n(y + 1)E C: 2|m| + n|Z|

y extra pro. msg. D: n(E + M) D: (n + 1)|m| + n|Z|
IEH [X ′′]HEhekC

= n|m| No TTP C: 2nE C: 2|m| + n|Z|
D: n(E + M + A) D: (n + 1)|m| + n|Z|

SF [X ′′]HEhekC
= n|m| No TTP C: 2nE C: 2|m| + n|Z|

D: n(E + M + A) D: (n + 1)|m| + n|Z|
1

E=O(k3), M=O(k2), A=O(k)
2 |Z| < |m|

4.6 Summary

In this chapter we have examined FaCT protocols without special trusted third

parties. The main characteristic of these protocols is that the client generates the

watermark. We discuss two approaches used in existing protocols. The first approach

is based on homomorphic bit commitment schemes and zero-knowledge proofs of

knowledge. The client in these protocols proves to the distributor that the watermark

is well-formed. Due to this, they are relatively computationally expensive. This

approach is represented by the PS protocol, which we discussed.

The second approach is based on homomorphic encryption schemes. The client in

these protocols can generate any watermark and there is no need to convince the

distributor that the watermark is well-formed. Without needing the zero-knowledge

proof, these protocols are relatively more efficient. This approach is discussed by

examining the recently proposed IEH protocols. We demonstrated flaws, which are

caused by the client being able to exploit the watermark generation process, in the

IEH protocols. This work was published in [111].

Due to these flaws, which also apply to other protocols in the same category, we

argued that it is difficult to design a protocol without trusted third parties that is

efficient. We further suggest a new Semi-Fair protocol that is efficient and does not

face the issues of the second approach, but requires a stronger assumption in that

the distributor is trusted more than the client.

119

Chapter 5

FaCT Protocols with Online

Trusted Third Parties

Contents

5.1 Overview . 120

5.2 The Lei-Yu-Tsai-Chan Protocol 121

5.2.1 Deng-Preneel Analysis of the Protocol 126

5.3 The Wu-Pang Protocol . 127

5.4 The Ahmed-Sattar-Siyal-Yu Protocol 131

5.4.1 Flaws in ASSY Protocol . 135

5.5 Analysis . 137

5.5.1 Security . 137

5.5.2 Efficiency . 139

5.6 Summary . 142

This chapter examines FaCT protocols that require special online trusted third par-

ties. We discuss and compare conventional protocols that deploy asymmetric homo-

morphic encryption schemes and newer protocols that use more efficient approaches.

We further show that one recently proposed protocol is flawed due to lack of a proper

definition of security properties.

5.1 Overview

FaCT protocols that require online trusted third parties are protocols that deploy

a special trusted third party, such as a WCA, to generate client watermarks. The

120

5.2 The Lei-Yu-Tsai-Chan Protocol

trusted third party is online, meaning that it is always available during content

distribution. There are two approaches to designing such protocols.

The conventional approach uses homomorphic encryption schemes such as Paillier

(Figure 2.5) for embedding the watermark in the encrypted domain. We will describe

the Lei-Yu-Tsai-Chan protocol [85] in Section 5.2 as an example.

The other approaches seek to replace homomorphic encryption schemes with more

efficient alternatives. We describe the protocol proposed by Wu and Pang [137]

(Section 5.3) as an example. We then describe a protocol proposed by Ahmed et

al. [3], and show that the protocol is flawed (Section 5.4). This work was published

in [112].

5.2 The Lei-Yu-Tsai-Chan Protocol

Lei, Yu, Tsai and Chan (LYTC) proposed a protocol [85] that is based on the MW

protocol described in Section 3.7. It is interesting because it is the first protocol

that highlighted the unbinding attack (see Section 4.3), showed that the attack can

be mounted successfully on the MW protocol and proposed a solution to prevent

this attack. The solution is to bind the client watermark onto the specific content

requested by the client based on an agreement that contains a description of the

content. It is also one of the earliest protocols that uses an online trusted third

party and provides anonymity and unlinkability.

Fundamentals. The LYTC protocol involves five parties. These are C, D, a CA,

a WCA and A. The CA, WCA and A are fully trusted. The protocol provides the

three standard properties and additionally provides anonymity and unlinkability.

Environment. Although not mentioned in [85], the protocol assumes that C and D

have ample computing resources. This is because of the large number of homomor-

phic encryptions (and decryptions) required to be performed by both C and D. The

protocol also assumes public key and secure communication support. It deploys

a WCA to generate the client watermarks and the WCA is always online during

content distribution. The main building blocks are digital watermarking schemes,

homomorphic encryption schemes and digital signature schemes. Table 5.1 shows

the design framework of the LYTC protocol.

121

5.2 The Lei-Yu-Tsai-Chan Protocol

Table 5.1: The Design Framework of the LYTC Protocol
Fundamentals

Parties Involved C, D, CA, WCA, A
Trust Assumptions CA, WCA, A are fully trusted
Security Properties Traceability (TR), Framing resistance (FR),

Non-repudiation of redistribution (NR),
Anonymity and unlinkability (AU)

Environment

Comp. Resources Implicitly assumed D and C have ample resources
Sec. comm. Support Required
Pub. Key Support Required
TTPs online TTP (WCA)
Building Blocks Digital watermarking scheme,

homomorphic encryption scheme
and digital signature scheme

In the following we describe the protocol.

Initial Setup. The main purpose of this phase is for C and D to obtain certified

public keys. Since the protocol also provides anonymity and unlinkability, certified

anonymous keys are also provided by the CA to C. Hence there are two parts to

the setup. The first part is for the CA to produce certified keys, and the second

part is for the CA to produce certified anonymous keys. We note that the second

part can be ignored if anonymity and unlinkability are not required. Following the

general construction for protocols with anonymity and unlinkability discussed in

Section 3.5.5, we describe the steps below. Figure 5.1 shows the protocol messages

transmitted between the parties involved.

Before

1

content

CA → C

{

[hekC , pvkC , IDC]SIGsskCA

}

AKE
: distribution

Initial Setup:

CA → D :
{

[hekD, pvkD, IDD]SIGsskCA

}

AKE

C → CA

{

pvk∗

C , hek∗

C , [pvk∗

C , hek∗

C]SIGsskC
, [hekC , pvkC , IDC]SIGsskCA

}

AKE
:

CA → C : {CertsskCA
(pvk∗

C , hek∗

C)}
AKE

C&D → CA {Request authenticated keys}
AKE:

Figure 5.1: LYTC Protocol – Initial Setup

(I) C and D register with the CA to obtain authenticated public keys.

1. C generates a signing key pair (pvkC , sskC) and an encryption key pair

(hekC , hdkC). Next C sends the public verification key pvkC and the pub-

122

5.2 The Lei-Yu-Tsai-Chan Protocol

lic encryption key hekC to the CA. The same process is followed by D.

(II) The CA generates and provides C and D with the authenticated key materials.

2. The CA, upon verifying the identity information provided by C and D, pro-

vides both parties with certified public keys. This means that signatures are

produced on these keys, which can later be used by C and D to prove the

validity of their respective public keys. This is shown in Figure 5.1.

(III) Anonymous certification of a new randomly generated key pair by the CA.

3. To create an anonymous certificate, C randomly generates a signature key

pair (pvk∗
C , ssk∗

C). C also generates an encryption key pair (hek∗
C , hdk∗

C) and

sends pvk∗
C , hek∗

C , a signature [pvk∗
C , hek∗

C]SIGsskC
and the CA’s signature on

the permanent public keys to the CA. The CA verifies the signatures and

generates a signature [pvk∗
C , hek∗

C]SIGsskCA
as the anonymous certificate. This

anonymous certificate is denoted by CertsskCA
(pvk∗

C , hek∗
C).

(IV) The CA sends the signed keys to C.

4. The anonymous certificate CertsskCA
(pvk∗

C , hek∗
C) is sent to C.

Content Watermarking and Distribution. This is the main phase in which D

marks and encrypts content. The marked content is then sent to C. The proto-

col messages are shown in Figure 5.2 and the protocol steps are described in the

following:

(I) C requests content and approves a content agreement with D.

1. C requests content from D by first negotiating with D a purchase agreement

AGR. This AGR states the rights and licensing of the specific content.

2. C randomly generates one-time signature and encryption key pairs (pvk∗, ssk∗)

and (hek∗, hdk∗). Next, an anonymous certificate is produced on the public

123

5.2 The Lei-Yu-Tsai-Chan Protocol

2

D → WCA {C’s message, X ′}
AKE

:

WCA → D {[W]HEhek∗
, [W]HEhekWCA

,:

Content

distribution

C → D {pvk∗, hek∗,CertsskCA
(pvk∗

C , hek∗

C),:

Content Watermarking and Distribution:

Certssk∗

C
(pvk∗, hek∗),AGR, [AGR]SIGssk∗

}AKE

[[W]HEhek∗
, pvk∗, hek∗, [AGR]SIGssk∗

]SIGsskWCA
}AKE

D → C {[X ′′]HEhek∗
}
AKE

:

Figure 5.2: LYTC Protocol – Content Watermarking and Distribution

keys, resulting in a certificate Certssk∗

C
(pvk∗, hek∗). C signs the agreement

AGR, resulting in [AGR]SIGssk∗
, using the newly generated signing key ssk∗

and sends to D pvk∗,hek∗, CertsskCA
(pvk∗

C , hek∗
C), Certssk∗

C
(pvk∗, hek∗), AGR

and [AGR]SIGssk∗
.

(II) D requests a client watermark from the WCA.

3. Upon receiving the message from C, D first checks that the certificate is valid

and also verifies the signature. D aborts the protocol if any of them are

invalid. If not, D generates a unique watermark V specific to this transaction.

D embeds V into content X using any digital watermarking scheme preferred

by D:

X ′ ← [X, V]EMBwmkV
.

This watermark V is required so that when a copy of content is found, D can

detect V and, based on V , D can identify the client. After that, D sends

pvk∗, hek∗, CertsskCA
(pvk∗

C , hek∗
C), Certssk∗

C
(pvk∗, hek∗), AGR, [AGR]SIGssk∗

and X ′ to the WCA.

(III) The WCA sends an encrypted client watermark to D.

4. The WCA verifies the anonymous certificate and the signature. If these are

valid then the WCA generates a client watermark W . Next, the WCA encrypts

the watermark using hek∗ and hekWCA, based on a homomorphic encryption

scheme, resulting in [W]HEhek∗
and [W]HEhekWCA

. The WCA also generates

a signature [[W]HEhek∗
, pvk∗, hek∗, [AGR]SIGssk∗

]SIGsskWCA
. The two encrypted

watermarks and the signature are sent to D.

124

5.2 The Lei-Yu-Tsai-Chan Protocol

(IV) D produces a marked copy of the requested content and sends it to C.

5. Upon receiving the watermarks and signature from the WCA, D verifies the

signature and embeds watermark W into content element-by-element as fol-

lows:

[x′
i]HEhek∗

· [wi]HEhek∗

= [x′
i ◦ wi]HEhek∗

= [x
′′

i]HEhek∗



 1 ≤ i ≤ n,

where n is the number of elements in the watermark and content, and ◦ rep-

resents either modular addition, modular multiplication or bit-wise XOR de-

pending on the underlying homomorphic encryption used. We denote:

[X ′′]HEhek∗
= ([x

′′

1]HEhek∗
, [x

′′

2]HEhek∗
, . . . , [x

′′

n]HEhek∗
).

D then stores in his database: the encrypted watermarks [W]HEhek∗
and

[W]HEhekWCA
, the signatures [[W]HEhek∗

, pvk∗, hek∗, [AGR]SIGssk∗
]SIGsskWCA

and

[AGR]SIGssk∗
, the watermark V , the certificates CertsskCA

(pvk∗
C , hek∗

C) and

Certssk∗

C
(pvk∗, hek∗), and AGR. Next D sends [X ′′]HEhek∗

to C.

6. Finally, C decrypts [X ′′]HEhek∗
to obtain the marked content X ′′.

Identification and Dispute Resolution. When a suspicious copy of content is

found, D initiates this phase to prove to A that C has illegally distributed a copy

of the content. The protocol steps are described in the following (Figure 5.3):

{true, false} ← [X̂, V, X]DETwmk

true← [X̂,W,X ′]DETwmk

:D → A

3

D :

{[[W]HEhek∗
, pvk∗, hek∗, [AGR]SIGssk∗

]SIGsskWCA
,

After

content

distribution

A :

Identification and Dispute Resolution:

CertsskCA
(pvk∗

C , hek∗

C),Certssk∗

C
(pvk∗, hek∗), [AGR]SIGssk∗

,

AGR, [W]HEhek∗
, [W]HEhekWCA

, X ′, X̂}AKE

A→ WCA {watermark info?}
AKE:

WCA → A {watermark info}
AKE:

A→ CA {pvk∗

C , hek∗

C ,CertsskCA
(pvk∗

C , hek∗

C)}
AKE:

CA → A {IDC}AKE:

Figure 5.3: LYTC Protocol – Identification and Dispute Resolution

(I) D detects a watermark from the found copy of content in order to identify the

client that owns the content.

125

5.2 The Lei-Yu-Tsai-Chan Protocol

1. When an illegal copy of content X̂ is found, D detects watermark V from this

copy. If V is detected and can be matched to one of the clients in the database,

then D is successful in identifying the perpetrator that illegally distributed this

copy of content.

(II) D proves to A that C illegally distributed copies of content.

2. D sends [AGR]SIGssk∗
, [[W]HEhek∗

, pvk∗, hek∗, [AGR]SIGssk∗
]SIGsskWCA

, the cer-

tificates CertsskCA
(pvk∗

C , hek∗
C) and Certssk∗

C
(pvk∗, hek∗), the agreement AGR,

the encrypted watermarks [W]HEhek∗
, [W]HEhekWCA

and the marked content X ′,

along with the found copy X̂, to A.

3. Upon receiving these messages, A verifies the certificates and signature. If

these are valid, A requests the WCA to decrypt [W]HEhekWCA
. With W in hand,

A performs a correctness check on [W]HEhek∗
. This is done by encrypting the

watermark W obtained from WCA and comparing the result with [W]HEhek∗
.

If both are identical then A proceeds to detect watermark W from the found

copy X̂:

true← [X̂, W, X ′]DETwmk
.

If the detection returns true, then A asks the CA to reveal C using pvk∗ and

hek∗.

5.2.1 Deng-Preneel Analysis of the Protocol

The LYTC protocol suffers from the probabilistic encryption problem, similar to

the IEH protocols discussed in Section 4.3.5. This is because in Step 3 of the

Identification and Dispute Resolution phase, A re-encrypts watermark W ob-

tained from WCA and compares the re-encrypted watermark with the one originally

provided by D. If a probabilistic homomorphic encryption scheme such as Paillier

(Figure 2.5) or Goldwasser-Micali (Figure 2.4) is deployed, then the re-encryption

results in a different encrypted message with high probability. In such a case, the ver-

ification based on comparing the re-encrypted watermark with the original [W]HEhek∗

will fail.

126

5.3 The Wu-Pang Protocol

In summary, the LYTC protocol is an improved and extended version of the MW

protocol but requires the use of deterministic homomorphic encryption schemes such

as RSA (Figure 2.3).

5.3 The Wu-Pang Protocol

Wu and Pang [137] proposed a FaCT protocol that only requires a digital water-

marking scheme for D to produce the marked content, but at the same time the

distributor D does not know the embedded watermark and the final marked copy

given to C. As a result of this, the WP protocol is more efficient than the LYTC

protocol discussed in the previous section, since no homomorphic encryption is in-

volved.

Fundamentals. The WP protocol involves five parties. These are C, D, a CA,

a WCA and A. The CA, WCA and A are fully trusted. The protocol provides

traceability, framing resistance and non-repudiation of redistribution.

Environment. Since the protocol does not involve computational intensive opera-

tions based on homomorphic encryption, it has the flexibility for C to possess only

limited resources. D still needs to have ample resources since there may be many

clients contacting D to request content. While not mentioned directly, the WP pro-

tocol requires public key support and a secure communication channel. The main

building blocks are the spread spectrum watermarking scheme [28] described in Fig-

ure 2.1, asymmetric encryption schemes and digital signature schemes. Table 5.2

illustrates the design framework of the WP protocol.

We note that the WP protocol is incomplete in the sense that it does not provide de-

tailed protocol messages between the parties involved, except for a brief description

of the communication with the WCA. This means, for example, that the requirement

for signatures for data origin authentication and non-repudiation of redistribution

are only mentioned and assumed in placed. Therefore, in our later description of

the protocol, we briefly state the needs for the signatures or other information in

the protocol messages between the parties involved.

The main idea of the protocol is to let the WCA generate two independent water-

marks, W1 and W2, and add these two watermarks together. The resulting water-

127

5.3 The Wu-Pang Protocol

Table 5.2: The Design Framework of the WP Protocol
Fundamentals

Parties Involved C, D, CA, WCA, A
Trust Assumptions CA, WCA and A are fully trusted
Security Properties Traceability (TR), Framing resistance (FR),

Non-repudiation of redistribution (NR)

Environment

Comp. Resources D have ample resources
Flexibility: C may have limited resources

Sec. comm. Support Required
Pub. Key Support Required
TTPs online TTP (WCA)
Building Blocks Digital watermarking scheme,

asymmetric encryption scheme
and digital signature scheme

mark W is embedded into content by D. This means that a marked content X ′ that

consists of two watermarks is produced. One of the watermarks W2 is set in such a

way that it distorts the content into a copy with much less quality than the original.

This lesser quality copy is given to C. To obtain content that is of similar quality to

the original, C is given W2. C subtracts W2 from the lesser quality marked content

X ′ to produce a copy of content that is marked only with W1 and is of similar quality

to the original. D does not know W1 and the final marked copy since he only has

W = W1 +W2. Similarly, C does not know W1 since he is only given W2. There are

other measures to make sure that D and C cannot guess W1 from the information

that they have. In the following we describe the protocol in more detail.

Initial Setup. As this was not provided in the original description by Wu and

Pang in [137], we assume this is similar to the Initial Setup phase in the LYTC

protocol described in Section 5.2, except that anonymity and unlinkability are not

considered. So D and C register with the CA to obtain the CA’s signatures (or

certificate) on their respective public keys (i.e. C’s and D’s signature verifica-

tion and public encryption keys). We denote this by [pekC , pvkC , IDC]SIGsskCA
and

[pekD, pvkD, IDD]SIGsskCA
. This allows the parties involved to verify that signatures

are authentic. Figure 5.4 shows the protocol messages.

Content Watermarking and Distribution. In Wu and Pang’s original descrip-

tion in [137], there is no provision of public keys and signatures. We adopt the

original description but provide these messages containing public keys and signa-

tures to show completeness of the protocol. Figure 5.5 shows the protocol messages

128

5.3 The Wu-Pang Protocol

Before

1

content

CA → C

{

[pekC , pvkC , IDC]SIGsskCA

}

AKE
: distribution

Initial Setup:

CA → D :
{

[pekD, pvkD, IDD]SIGsskCA

}

AKE

C&D → CA {Request authenticated keys}
AKE:

Figure 5.4: WP Protocol – Initial Setup

and the protocol steps are described below:

(I) C requests content from D.

1. C sends to D a content request message. The message includes the CA’s

signature [pekC , pvkC , IDC]SIGsskCA
and C’s public verification key pvkC .

(II) D requests a watermark from the WCA.

2. Upon receiving the content request, D sends C’s request and description of

the content to the WCA.

(III) The WCA sends a watermark to D.

3. The WCA generates two distinct watermarks W1 and W2 based on the features

of content and the client information provided by D. After that, the WCA

computes W = W1 + βW2, where β > 1 is a pre-determined parameter that

controls the distortion level of the marked content. The WCA also sets a pa-

rameter ρ, where ρ is a real number, which is determined by the robustness and

content quality requirements of the underlying spread spectrum watermarking

scheme (Figure 2.1). As suggested in [137] based on their experiments, ρ = 20

and β = 10. They also mentioned that for the security of the protocol, ρ and

β must be kept secret from C. This leads to a security issue, which we discuss

in the summary of Section 5.5.1.

4. Then WCA computes ρβW2 and encrypts it with C’s public encryption key

pekC as [ρβW2]PEpekC
, using an asymmetric encryption scheme such as RSA-

OAEP [82]. The WCA sends [ρβW2]PEpekC
to C.

129

5.3 The Wu-Pang Protocol

5. The WCA also encrypts W with D’s public encryption key pekD as [W]PEpekD

and sends this to D, together with the parameter ρ.

(IV) D produces a marked copy of the requested content and sends it to C.

6. Upon receiving [W]PEpekD
from the WCA, D decrypts the message to retrieve

W . Next D embeds W into content X using the parameter ρ. This generates

a marked content as:

X ′ = X + ρW = X + ρW1 + ρβW2.

The marked content X ′ and the description of the content are encrypted using

C’s public encryption key and sent to C.

7. When X ′ is received, C generates his marked copy by performing the following:

X ′ − ρβW2 = X + ρW1 + ρβW2 − ρβW2 = X + ρW1.

C also verifies that X + ρW1 matches the content description provided by D.

2

D → WCA {C’s request, description of X}AKE:

WCA → C

{

[ρβW2]PEpekC

}

AKE
:

Content

distribution

C → D {request content}AKE:

Content Watermarking and Distribution:

WCA → D

{

ρ, [W = W1 + βW2]PEpekD

}

AKE
:

D → C {X ′, description of X}AKE:

Figure 5.5: WP Protocol – Content Watermarking and Distribution

Identification and Dispute Resolution. The protocol steps are described be-

low, and Figure 5.6 shows the protocol messages.

(I) D detects a watermark from the found copy of content in order to identify the

client that owns the content.

1. When an illegal copy X̂ = X + ρ̂W1 is found, D subtracts the original content

X from X̂. This results in a watermark ρ̂W1. Then, based on W = W1 +βW2

and ρ̂W1, by setting a proper measure, D is able to detect the presence of

ρ̂W1, which is similar to ρW1. Wu and Pang provide details of the detection

process in [137].

130

5.4 The Ahmed-Sattar-Siyal-Yu Protocol

(II) D proves to A that C illegally distributed copies of content.

2. Upon successful detection, D sends X̂ to A. Next, A requests the WCA to

provide the original watermark W1 and the parameter ρ. Based on these, A

detects W1 from the illegal copy X̂. This detection is more accurate than the

detection by distributor D since there is less noise involved given the exact

watermark W1 and the parameter ρ, instead of detection using W . If the

detection returns true, then C is guilty.

{true, false} ← [X̂,W,X]DETwmk

true← [X̂, ρW1, ρ̂W1]DETwmk

:D → A

3

D : {
X̂

}
AKE

After

content

distribution

A→ WCA {Request watermark}
AKE:

WCA → A {ρ,W1}AKE:

A :

Identification and Dispute Resolution:

Figure 5.6: WP Protocol – Identification and Dispute Resolution

In summary, the WP protocol is a simple and efficient FaCT protocol that does not

require specific building blocks such as a homomorphic encryption scheme. How-

ever, the security of the protocol relies on the two parameters ρ and β, which have

small values as suggested in [137]. We will discuss this issue in the summary of

Section 5.5.1.

5.4 The Ahmed-Sattar-Siyal-Yu Protocol

The Ahmed-Sattar-Siyal-Yu (ASSY) protocol was proposed in [3]. Similarly to the

WP protocol, it is interesting because it does not use homomorphic encryption.

However, we will show that there are design flaws in the ASSY protocol. This work

was published in [112].

Fundamentals. The ASSY protocol involves five parties. These are C, D, a CA,

a WCA and A. The CA, WCA and A are fully trusted. The protocol claimed to

provide traceability and non-repudiation of redistribution.

Environment. Similarly to the WP protocol, we assume that D has ample re-

sources, while C may only possess limited resources. The ASSY protocol requires

131

5.4 The Ahmed-Sattar-Siyal-Yu Protocol

public key support and secure communication. The main building blocks are dig-

ital watermarking schemes and digital signature schemes. We remark that in the

proposal two different types of watermarking schemes, based on the spread spec-

trum scheme described in Section 2.3.1, were proposed. We will not discuss them

in detail as our focus is on the roles of the parties involved and how the exchange

of protocol messages between the distributor and the client attempts to provide the

requirements listed above. Table 5.3 summarises the design framework of the ASSY

protocol.

As can be observed, the ASSY protocol does not provide framing resistance, which

is the main reason that it is not secure. We show how the provisions of traceability

and non-repudiation of redistribution are flawed, unless both the distributor and the

client are fully trusted, which in this case defeats the very purpose of constructing

the protocol, where the distributor and the client do not trust each other.

The ASSY protocol also claimed to provide client-distributor identification and own-

ership verification. The first property allows a client to reveal the identity of the

distributor and his own identity from the received marked content so that the client

can ascertain that the content is indeed meant for him. It is also used as one of the

mechanisms to provide non-repudiation of redistribution. We will show how this is

flawed. The second property allows the distributor to claim ownership of content

when multiple ownership claims occur. This relates more to the issue of copyright

ownership instead of fair content tracing and hence we will not discuss it.

We next describe the three phases of the ASSY protocol.

Table 5.3: The Design Framework of the ASSY Protocol
Fundamentals

Parties Involved C, D, CA, WCA, A
Trust Assumptions CA, WCA, A are fully trusted
Security Properties Traceability (TR),

Non-repudiation of redistribution (NR)

Environment

Comp. Resources D have ample resources
Flexibility: C may have limited resources

Sec. comm. Support Required
Pub. Key Support Required
TTPs online TTP (WCA)
Building Blocks Digital watermarking scheme,

and digital signature scheme

132

5.4 The Ahmed-Sattar-Siyal-Yu Protocol

Initial Setup. In this phase the parties involved, such as D and C, generate

signature key pairs (pvkD, sskD) and (pvkC , sskC). The public verification keys

are signed by a CA, together with C and D’s identity to prove the authenticity of

the keys of the parties involved. The public keys and the signatures can then be

distributed to all parties involved in the protocols. This is similar to the Initial

Setup phase of the LYTC protocol discussed in Section 5.2, except that it does not

involve the generation of an anonymous certificate. Figure 5.7 shows the protocol

messages.

Before

1

content

CA → C

{

[pvkC , IDC]SIGsskCA

}

AKE
: distribution

Initial Setup:

CA → D :
{

[pvkD, IDD]SIGsskCA

}

AKE

C&D → CA {Request authenticated keys}
AKE:

Figure 5.7: ASSY Protocol – Initial Setup

Content Watermarking and Distribution. Figure 5.8 illustrates the protocol

messages. We describe the protocol steps as follows:

(I) C requests content from D.

1. C initiates the protocol by sending a purchase request message to D. This

message contains C’s public key and the CA’s signature on this key.

(II) D requests a client watermark from the WCA.

2. D contacts the WCA to request a distributor’s watermark V . The hash value

of the original content H(X) to the WCA by D. This hash value can be gener-

ated based on a cryptographic hash function such as SHA-2 [70] or RIPEMD-

160 [37].

(III) The WCA sends an encrypted client watermark to D.

3. After verifying the request, the WCA generates V and a signature consisting

of V , a hash value of X and a timestamp T as [V, H(X), T]SIGsskWCA
. The

watermark, the timestamp and the signature are sent to D.

133

5.4 The Ahmed-Sattar-Siyal-Yu Protocol

(IV) D produces a marked copy of the requested content and sends it to C.

4. After receiving this message and verifying the signature, D embeds V into

content X requested by C, resulting in the marked content X ′:

X ′ ← [X, V]EMBwmkV
.

5. D generates C’s watermark as W = H(pvkD, pvkC). In other words, the

watermark W is the hash value of the public keys of D and C.

6. D embeds the watermark W into content. Due to the specific design of the

underlying watermarking algorithm proposed by Ahmed et al. [3], a watermark

public key KS is also generated during watermark embedding:

X ′′,KS ← [X ′, W]EMBwmkV
.

The marked content X ′′, the key KS and a hash value H(V) are sent to C,

together with a signature [X ′′,KS , H(V)]SIGsskD
generated by D.

7. Using key KS , C extracts a watermark W from the marked content X ′′ and

compares W with the hash value H(pvkD, pvkC). If W = H(pvkD, pvkC),

then C can be sure that W reflects C’s and D’s identities.

8. C generates a signature [H(X ′′, H(V), pvkD)]SIGsskC
to acknowledge receiving

the marked content and sends this signature to D. This is different from the

previous protocols.

9. Finally, D checks the signature [H(X ′′, H(V), pvkD)]SIGsskC
.

2

D → WCA {request watermark V }
AKE

:

WCA → D
{

V, T, [V,H(X), T]SIGsskWCA

}

AKE

:

Content

distribution

C → D {request content}
AKE:

Content Watermarking and Distribution:

D → C
{

X ′′,KS ,H(V), [X ′′,KS ,H(V)]SIGsskD

}

AKE

:

C → D
{

[H(X ′′,H(V), pvkD)]SIGsskC

}

AKE

:

Figure 5.8: ASSY Protocol – Content Watermarking and Distribution

Identification and Dispute Resolution. When an illegal copy of content X̂ is

found, D and A initiate the following, with Figure 5.9 showing the protocol messages:

134

5.4 The Ahmed-Sattar-Siyal-Yu Protocol

(I) A (or D) detects a watermark from the found copy of content in order to identify

the client that owns the content.

1. As was illustrated in Step 7, A can verify that C is the legitimate owner of

the found content X̂ based on the extracted watermark W , by comparing the

watermark W with the hash value H(pvkD, pvkC). This hash value can be

easily produced by A since it is based on the public keys of C and D. For the

same reason, C is capable of removing W from the original marked content.

So if W cannot be found from X̂, A and D move to the next step.

(II) D proves to A that C illegally distributed copies of content.

2. D supplies A with the original content X, the marked content X ′′, the found

copy X̂, the watermark V and the client signature [X ′′, H(V), pvkD]SIGsskC
.

A extracts V from X̂ based on X and retrieves H(X ′′, H(V), pvkD) from

[H(X ′′, H(V), pvkD)]SIGsskC
. Next, A computes H∗(X ′′, H(V), pvkD) based

on X ′′ and V supplied by D. If H∗(X ′′, H(V), pvkD) = H(X ′′, H(V), pvkD)

then A is sure that C bought content X ′′ from D. Finally, C is considered

guilty when the extracted watermark V matches the original V supplied by D

and the found content X̂ is similar to X ′′.

{true, false} ← [X̂,W,KS]DETwmk

true← [X̂, V, X ′′]DETwmk

3

D or A :

After

content

distribution
A :

Identification and Dispute Resolution:

:D → A

{
X, X ′′, X̂, V, [H(X ′′,H(V), pvk

D
)]SIGsskC

}

AKE

Figure 5.9: ASSY Protocol – Identification and Dispute Resolution

5.4.1 Flaws in ASSY Protocol

In this section we analyse the ASSY protocol against three attacks. The first attack

is a common attack on FaCT protocols but has not been explicitly defined previously.

The second attack is a new attack that we have defined based on the design weakness

135

5.4 The Ahmed-Sattar-Siyal-Yu Protocol

of the ASSY protocol. The third attack is similar to the client-generate-watermark

attack described in Section 4.3.3.

Attack 1: Framing and Buyer-denial Attacks. D knows both the watermarks V

and W and can launch a framing attack on C. As can be observed from the Content

Watermarking and Distribution phase, when an illegal copy X̂ is found, D identi-

fies C by extracting watermark V and/or W from this found copy. After doing so, D

searches the database for the acknowledgment signature [H(X ′′, H(V), pvkD)]SIGsskC

to prove that C indeed bought the content that is similar to the illegal copy. We

argue that C can be framed by an unscrupulous D since D knows both V and W

and can embed these watermarks into any content. Even worse, D has the client’s

signature [H(X ′′, H(V), pvkD)]SIGsskC
and can prove that C bought the content,

when instead copies of it may have been illegally distributed by D. Conversely, C

can launch a buyer-denial attack and claim that it is D who distributed illegal copies

of content. This creates a deadlock scenario and can only be solved if we assume

that either D or C is honest. Hence, as long as the above scenario of framing or

denial exists, D cannot prove to a third party that C is guilty. As Ahmed et al. did

not consider the possibility of a framing attack, we argue that proving C guilty of

illegal content distribution based on the watermarks V , W and C’s acknowledgment

signature in their protocol is flawed.

Attack 2: Client-runaway Attack. C can choose not to send the acknowledg-

ment signature [H(X ′′, H(V), pvkD)]SIGsskC
to D, since C has already obtained the

marked content. Without this signature, there is no way for D to prove to a third

party that an illegal copy of bought content belongs to C. While D can always

request C to send this signature, a dishonest C can either refuse (or pretend) that

it has been sent. The only resolution in the above scenario is for D to blacklist this

dishonest C from the client database.

Attack 3: Client-generate-watermark Attack. C can compute the watermark

W = H(pvkD, pvkC) and trivially subtract W from the marked content (which is

also mentioned as possible in [3]). We stress that C can also replace the watermark,

since W is the hash value of two public verification keys. In this case C can hash

any other client’s verification key together with the distributor’s verification key,

resulting in a new watermark WU = H(pvkD, pvkU), and can then embed this

watermark into content, which totally dismisses the credibility of the identification

136

5.5 Analysis

process in Step (I) in the Identification and Dispute Resolution phase.

We further note that in fact anyone authorised to check watermark W can launch

a watermark-removal attack since (pvkD, pvkC) are in the public domain. So wa-

termark W seems not to serve any purpose at all. Identification of the client still

requires the distributor to detect watermark V from any content, rendering the

process of embedding and detecting W redundant.

As can be observed from the three attacks presented, the ASSY protocol is not

secure. The main problems are the fact that D has full access to the two water-

marks and the final marked content, and the requirement that C sends to D an

acknowledgment receipt.

5.5 Analysis

In the following we provide security analysis and performance comparisons of the

protocols that we have discussed.

5.5.1 Security

In this section we analyse the security of the FaCT protocols we have discussed.

Traceability. In the LYTC protocol, traceability is assured through the embedding

and detection of watermark V and W . D can trace C based on watermark V , and

A can trace C based on watermark W , with the help of the CA and WCA.

In the WP protocol, traceability is assured through the detection of watermark W1.

In the ASSY protocol, traceability is provided through the watermark V given to

D by the WCA. The other watermark W = H(pvkD, pvkC) cannot assure trace-

ability since it can be generated by anyone using the two publicly available public

verification keys. This was demonstrated in Attack 3 in Section 5.4.1.

Framing Resistance. In the LYTC protocol, since the WCA generates watermark

W and encrypts the watermark, it is not possible for D to frame C as D does not

know the embedded watermark W and the final marked copy given to C. However,

137

5.5 Analysis

as mentioned in Section 5.2.1, the protocol restricts itself to only deterministic ho-

momorphic encryption schemes. As was pointed out in [90, Section 2.2], using such

encryption schemes for watermarking content in the encrypted domain is not secure.

This is mainly due to the size of the content space (e.g. images in 16 bits) being

small, and a brute force attack may be carried out to guess the encrypted message.

The LYTC protocol also prevents D from extracting the watermark from the found

copy and embedding this watermark into other more valuable content (the unbinding

attack). This is because there is the signature,

[[W]HEhek∗
, pvk∗, hek∗, [AGR]SIGssk∗

]SIGsskWCA
,

that explicitly binds the watermark with a particular content through AGR.

In the WP protocol, only the WCA knows the watermark W = W1 + βW2. D is in

possession of the watermark W = W1 + βW2 but does not know the final marked

copy X ′ = X + ρW1 possessed by C. So it is not possible for D to frame C. As

for preventing D from extracting and then embedding the watermark into other

content, although mentioned, this is not addressed. This is because D can extract

ρ̂W1 by subtracting the original content X from the found content X̂.

In the ASSY protocol, framing resistance is not considered. This resulted in the

protocol being susceptible to Attack 1 discussed in Section 5.4.1 and it thus fails

to provide framing resistance.

Non-repudiation of Redistribution. In the LYTC protocol, non-repudiation of

redistribution is provided since there is a signature generated by the WCA,

[[W]HEhek∗
, pvk∗, hek∗, [AGR]SIGssk∗

]SIGsskWCA
,

that binds the agreement AGR with the watermark W . Furthermore, when the

watermark W is detected, with the assistance of the WCA and CA, the identity of

C that matches watermark W can be obtained.

In the WP protocol, non-repudiation of redistribution is provided through the suc-

cessful detection of watermark W1 by A. With the assistance of the CA, the identity

information of C can be obtained.

In the ASSY protocol, non-repudiation of redistribution is not assured, although it

is claimed to be provided. The reason is because of the successful framing and client

138

5.5 Analysis

denial attacks that we demonstrated in Attack 1 in Section 5.4.1.

Anonymity and Unlinkability. The LYTC protocol further provides this prop-

erty. This can be observed from the Initial Setup phase, where anonymous cer-

tificate and one-time key pairs are used by C to communicate with D.

Summary. Assuming the security of the underlying building blocks, traceability,

framing resistance and non-repudiation of redistribution are provided in the LYTC

protocol and the WP protocol. However, for the LYTC protocol, there is the re-

striction of using deterministic homomorphic encryption schemes only.

We also note that for the WP protocol, Wu and Pang mentioned that the two pre-

determined parameters ρ and β are kept secret from C. If these values are revealed,

then C knows W2 from ρβW2 provided by D. Based on the knowledge of these

three values, C can produce a new watermark, which, when subtracted from the

marked content that contains W1, causes watermark detection to fail. As suggested

by Wu and Pang, ρ = 20 and β = 10. Based on their experiments, they showed

that these two values give the optimal results for generating a distorted content

and recovering a good quality content for C. However, they are small numbers and

hence the security of the protocol can be considered weak, since C can guess (or

exhaustively search for) these values.

As for the ASSY protocol, we have shown that due to the design flaws, it is not

secure. We summarise the security analysis of these protocols in Table 5.4.

Table 5.4: Summary of the Security Analysis
Protocols TR FR NR AU Conditions
LYTC X X X X Deterministic homomorphic encryption.
ASSY X × × × Susceptible to attacks I, II, III (Section 5.4.1).
WP X X X × C must not know ρ and β.

Susceptible to unbinding attack.

5.5.2 Efficiency

In this section we examine the performance of the protocols that we have discussed.

Table 5.5 shows the efficiency comparison between these protocols.

We will (reasonably) assume that the LYTC protocol presented in Section 5.2 deploys

the homomorphic encryption scheme of RSA [117] or Paillier [99], where both of the

139

5.5 Analysis

schemes have similar computational performance, as stated in [99]. We also use the

evaluation of the LYTC protocol to represent existing FaCT protocols with online

trusted third parties that deploy homomorphic encryption schemes. We further note

that the ASSY protocol contains flaws, as was shown in Section 5.4.1. Hence we will

not include the ASSY protocol in our comparisons.

Bandwidth. For the LYTC protocol, the size of the encrypted content that is

transmitted from D to C is n|m| following the underlying homomorphic encryption

scheme. This is because n elements of content are encrypted under the modulus m.

As an example, if |m| = 1024 and n = 10000, then the size of the encrypted content

will be 10000 · 1024 bits ≈ 1.3 MByte.

In the WP protocol, the final marked content size is n|Z|, where Z is the maximum

value possible for each element of the marked content as discussed in Section 3.6.

This is because the final marked content given to C is the same size as the original,

which has n elements and each element has |Z| bits.

Trusted Third parties. All protocols deploy an online trusted third party. This

means that the trusted third party is involved in the Content Watermarking and

Distribution phase, and must be always online so that the distributor can request

client watermarks when required. Hence, the communication overhead is higher

than the protocols without trusted third parties discussed in the previous chapter.

Computation. The most expensive computation in the LYTC protocol is modu-

lar exponentiation under the RSA or Paillier homomorphic encryption scheme for

encrypting and decrypting the marked content. As was described in the Content

Watermarking and Distribution phase in Section 5.2, for D, homomorphic en-

cryption is repeated n times to encrypt each content element. So the computation

required is nE. In addition, D multiplies the encrypted elements of the watermark

and the encrypted elements of content. This requires nM computations. Also, D

computes n additions (nA) to embed a watermark (i.e. V) into content. Hence the

computation for D is n(E + M + A). For C, decryption is repeated n times to

decrypt the marked content. Therefore the computation is nE for C.

Compared to the LYTC protocol, the generation of the final marked content in the

WP protocol is based only on the underlying watermarking scheme, which is the

spread spectrum watermarking scheme described in Figure 2.1. This means that

140

5.5 Analysis

the computation involves adding the watermark into content (A). As discussed in

Step 6 of the Content Watermarking and Distribution phase in Section 5.3, D

embeds one watermark into the content. Therefore the computation is nA. For C

the computation is nA as C needs to subtract a watermark from the marked content

to obtain a good quality copy of content, as shown in Step 7 of the same phase.

Storage. In the LYTC protocol, for producing the encrypted marked content, D

needs to store the homomorphic encryption key of C. This has size |m| bits, following

the size of the modulus m of the underlying homomorphic encryption scheme. D

also stores the encrypted watermark obtained from the WCA, which has size n|m|
due to n encrypted elements of the watermark each having |m| bits. D further stores

the watermark V , which has size n|Z|, as V has n elements and each element can

be |Z| bits in size, as stated in Section 3.6. Hence, in total, D stores (n + 1)|m| +
n|Z| bits. C, on the other hand, needs to store only the encryption and decryption

keys. This means 2|m| bits of storage.

In the WP protocol, D embeds a watermark W into content to generate the final

copy of content for C. The watermark W has the size of n|Z|. While for C, a

watermark W2 is required to produce a good quality copy of content from the final

copy given by D. This was illustrated in Step 7 of the Content Watermarking and

Distribution phase in Section 5.3. So C stores n|Z| bits for W2. However, C may

choose to purge W2 once the good quality copy is produced. In this case, C does

not require any storage. We again note that this considers only the storage required

to obtain the marked content.

Table 5.5: Efficiency Comparisons between Protocols with online Trusted Third Parties

Pro. Bandwidth1 TTP Computation2 Storage1

LYTC [X ′′]HEhekC
= n|m| online C: nE C: 2|m|

WCA D: n(E + M + A) D: (n + 1)|m| + n|Z|
WP X ′ = n|Z| online C: nA C: n|Z|(0)

WCA D: nA D: n|Z|
1 |Z| < |m|, |n| < |L|
2 E=O(k3), M=O(k2), A=O(k), S=E/100

Summary. From Table 5.5 and the above analysis, we observe that the WP proto-

col, which uses only a watermarking scheme, is computationally more efficient than

the conventional approach represented by the LYTC protocol.

141

5.6 Summary

5.6 Summary

In this chapter we investigated FaCT protocols with online trusted third parties. All

protocols deploy a special online trusted third party known as a WCA to generate the

client’s watermark. These protocols use either asymmetric homomorphic encryption

schemes such as the Paillier encryption scheme [99] as in the LYTC protocol [85],

or use more computationally efficient designs as in the WP [137] and ASSY [3]

protocols. We compared the security and efficiency of these protocols and exposed

design flaws in the ASSY protocol, which were published in [112].

142

Chapter 6

FaCT Protocols with Offline

Trusted Third Parties

Contents

6.1 Overview . 144

6.2 The Kuribayashi-Tanaka Information Gap Protocol . . . 144

6.3 A Protocol based on Chameleon Encryption 149

6.3.1 Chameleon Encryption . 150

6.3.2 The CE Protocol . 153

6.3.3 Alternative Approaches . 157

6.4 Analysis . 158

6.4.1 Security . 158

6.4.2 Efficiency . 161

6.5 Summary . 164

This chapter examines FaCT protocols that require special offline trusted third par-

ties. Our focus is on the approach where symmetric building blocks are used to

design these protocols, instead of the conventional approach where asymmetric ho-

momorphic schemes are deployed. We investigate one recent proposal and compare

it with a new design approach that we propose. This new approach uses a symmetric

building block known as Chameleon Encryption and is more efficient in terms of

communication with the trusted third party.

143

6.1 Overview

6.1 Overview

FaCT protocols that require offline trusted third parties are protocols that deploy a

special trusted third party, such as a KC, to generate client watermarks. The trusted

third party is offline because it is only involved during initial setup and when there

is a dispute between C and D. It is not involved during the actual process where

marked content is provided to C.

Similar to FaCT protocols with online trusted third parties in Chapter 5, they can

be designed either using the conventional approach or new approaches. The MW

protocol described in Section 3.7 is an example of the traditional approach, where

homomorphic encryption schemes are used for embedding the watermark in the

encrypted domain.

Our focus is on new approaches. We discuss a protocol proposed by Kuribayashi

and Tanaka [81] (Section 6.2), which uses symmetric encryption. We compare this

protocol with a new protocol that we propose (Section 6.3), which is based on

a symmetric building block known as Chameleon Encryption [1]. This work was

published in [110].

6.2 The Kuribayashi-Tanaka Information Gap Protocol

Kuribayashi and Tanaka proposed a FaCT protocol with offline trusted third parties

in [81]. It is interesting in that it only requires a conventional symmetric encryption

scheme (e.g. AES [72]) and that any digital watermarking scheme can be used. We

denote this protocol as the KTIG protocol.

Fundamentals. The KTIG protocol involves three parties. These are C, D and

a KC. The KC plays the roles of a CA, a WCA and A. The KC is fully trusted.

This protocol provides traceability, framing resistance and non-repudiation of redis-

tribution. We note that it was claimed in [81] that the KTIG protocol can provide

anonymity and unlinkability as long as the KC does not reveal the identity of C.

However, there is no concrete explanation as to how this can be achieved. Thus we

do not include anonymity and unlinkability in our discussion.

144

6.2 The Kuribayashi-Tanaka Information Gap Protocol

Environment. Since the protocol uses symmetric encryption, it seems to be suit-

able for the scenario where C has limited resources. The protocol also needs public

key support as digital signatures are required for the purpose of non-repudiation of

redistribution. We also assume that the protocol is conducted using a secure com-

munication channel. The KC is an offline trusted third party, who is only involved

during the initial setup and when there is a dispute between C and D. The main

building blocks are symmetric encryption schemes, digital watermarking schemes

and digital signature schemes. Table 6.1 shows the design framework of the KTIG

protocol.

Table 6.1: The Design Framework of the KTIG Protocol
Fundamentals

Parties Involved C, D, KC = WCA + CA + A
Trust Assumptions KC is fully trusted
Security Properties Traceability (TR), Framing resistance (FR),

Non-repudiation of redistribution (NR)

Environment

Comp. Resources D have ample resources
Flexibility: C may have limited resources

Sec. comm. Support Required
Pub. Key Support Required
TTPs offline TTP (KC)
Building Blocks Digital watermarking scheme,

symmetric encryption scheme
and digital signature scheme

The main idea of the KTIG protocol is to have the content divided into many smaller

packets. For each packet, an exact copy is created. One packet is embedded with

watermark “0” and the copy is embedded with watermark “1”. The same process is

carried out for all the content packets. All these packets are encrypted with a master

key by the distributor. The client has a unique key, and based on this key different

marked packets are selected and decrypted in a way that a unique watermark is

embedded. Since the distributor does not know which packets are selected and

decrypted, the distributor cannot guess the embedded watermark. Also, since the

client does not have the master key, the client is forced to use the given unique key

to select and decrypt content, and hence indirectly embeds a unique watermark into

content. Kuribayashi and Tanaka [81] defined this scenario as an information gap

between C and D. In the following we describe the protocol.

Initial Setup. The main purpose of this phase is for C and D to obtain certified

145

6.2 The Kuribayashi-Tanaka Information Gap Protocol

public keys. In addition, D generates a key table as the encryption key, while the KC

uses this key table to generate a unique decryption key for C. Figure 6.1 illustrates

the protocol messages.

Before

1

contentKC → C {CertsskKC
(IDC)}

AKE
:

distribution

Initial Setup:

KC → D : {CertsskKC
(IDD)}

AKE

D → KC {key index table, PRNG}
AKE

:

KC → C : {DKC}AKE

C&D → KC {Request authenticated keys}
AKE:

Figure 6.1: KTIG Protocol – Initial Setup

We describe the protocol steps as follows:

(I) C and D register with the KC to obtain authenticated key materials.

1. C and D register with the KC to obtain certificates for the purpose of authen-

ticating their identities, and as proof of registration.

(II) The KC generates and provides C and D with the authenticated key materials.

2. The KC certifies the identity information of C and D. For simplicity, we use

CertsskKC
(IDC) to represent the certificate for C and CertsskKC

(IDD) for D.

(III) C requests a decryption key from the KC.

3. When C requests a decryption key, the KC contacts D for the key materials

required to generate C’s decryption key. Then D generates an index key table

and chooses a pseudo-random number generator (PRNG). The index key table

contains many keys that are used as seeds for the PRNG. Each of these keys

matches to a unique transaction between D and C. After that, D gives to the

KC the index key table and the PRNG.

(IV) The KC sends a unique decryption key to C.

146

6.2 The Kuribayashi-Tanaka Information Gap Protocol

4. Given the index key table and the PRNG, the KC generates a key sequence

by selecting a key keyC from the table as an input to the PRNG. It is as-

sumed that IDC contains the index number for the KC to select keyC from

the table. Then the KC executes the PRNG to output a key sequence K =

(k0
1, k

1
2), (k

0
3, k

1
4), (k

0
5, k

1
6), . . . , (k

0
2n−1, k

1
2n) that contains 2n elements.

5. The KC generates client watermark W ∈ {0, 1}n based on the client’s IDC

and a random number rC . The computation is W = h(IDC , rC), where h is

an invertible function (a practical example of such a function was not pro-

vided in [81]). The KC stores W , rC and h(.) as secrets, and stores IDC ,

CertsskKC
(IDC) and rC as the client’s record.

6. The KC uses W to select the client’s decryption key from the key sequence K,

and these selected keys DKC are given to C. For example, if W = (0110...0)

then DKC = (k0
1, k

1
4, k

1
6, k

0
7, . . . , k

0
2n−1). Finally, the KC gives DKC to C.

Content Watermarking and Distribution. Figure 6.2 shows the protocol mes-

sages, and the protocol steps are as follows:

2

D → C {σ[X ′]EK
}
AKE:

Content

distribution

C → D {CertsskKC
(IDC)}

AKE:

Content Watermarking and Distribution:

Figure 6.2: KTIG Protocol – Content Watermarking and Distribution

(I) C requests content and provides D with the identity information IDC that con-

tains the index number for D to select keys from the index key table.

1. C requests content by sending certificate CertsskKC
(IDC) to D.

(II) D produces a marked copy of the requested content and sends it to C.

2. Upon receiving the request from C, D verifies C’s certificate. If the certificate

is valid, D divides the required content X into n packets, X = (x1, x2, . . . , xn).

D then selects an index key keyC from the pre-generated index key table. This

index key keyC is used as a seed for the PRNG. The PRNG generates a unique

key sequence based on keyC , K = (k0
1, k

1
2), (k

0
3, k

1
4), (k

0
5, k

1
6), . . . , (k

0
2n−1, k

1
2n).

147

6.2 The Kuribayashi-Tanaka Information Gap Protocol

This is identical to the key sequence generated by the KC in the Initial

Setup phase.

3. For each packet xi, 1 ≤ i ≤ n, two packets, x0
i and x1

i , are generated. Packet x0
i

is embedded with watermark “0” and packet x1
i is embedded with watermark

“1”. In other words, the marked content is X ′ = (x0
1, x

1
1, x

0
2, x

1
2, . . . , x

0
n, x1

n),

which is double in size compared to the original.

4. All marked packets are compressed and an error detection string is attached

to ensure correct decryption at a later stage.

5. The marked and compressed packets are encrypted using the key sequence K

based on a symmetric encryption scheme, as discussed in Section 2.3.2. The

encrypted packets are

[X ′]EK
= ([x0

1]Ek0
1

, [x1
1]Ek1

2

), ([x0
2]Ek0

3

, [x1
2]Ek1

4

), . . . , ([x0
n]E

k0
2n−1

, [x1
n]E

k1
2n

).

6. D permutes the order of each of the encrypted pair based on a permutation σ.

This permutation is to prevent C from learning whether a packet is embedded

with “0” or “1” based on the location of the encrypted packet.

7. D sends the permuted, encrypted marked content σ[X ′]EK
to C.

8. C decrypts σ[X ′]EK
using the decryption key DKC . For example, let the first

permuted, encrypted marked pair be ([x1
1]Ek1

2

, [x0
1]Ek0

1

) and the first decryption

key element be k0
1. C runs the decryption algorithm on both packets as follows:

⊥ ← [[x1
1]Ek1

2

]D
k0
1

x0
1 ← [[x0

1]Ek0
1

]D
k0
1

,

where ⊥ denotes that the decryption fails since the encryption key is different

from the decryption key. Recall that a symmetric encryption scheme is used. If

we assume DKC = (k0
1, k

1
4, k

1
6, k

0
7, . . . , k

0
2n−1), following the decryption process

for all the encrypted marked packets results in a decrypted marked content of

the form:

x0
1, x

1
2, x

1
3, x

0
4, . . . , x

0
n,

where by combining these decrypted packets a content marked with a unique

watermark W = (0110...0) is formed.

148

6.3 A Protocol based on Chameleon Encryption

Identification and Dispute Resolution. Figure 6.3 shows the protocol mes-

sages and the protocol steps are as follows:

{true, false} ← [X̂,W,X]DETwmk

:D → KC

3

D :

{W}
AKE

After

content

distribution

KC → D

{
prove C owns X̂

}

AKE
:

D → KC {CertsskKC
(IDC)}

AKE:

Identification and Dispute Resolution:

Figure 6.3: KTIG Protocol – Identification and Dispute Resolution

(I) D detects a watermark from the found copy of content in order to identify the

client that owns the content.

1. When an illegal copy of content X̂ is found, D extracts watermark W from X̂

and sends W to the KC.

(II) D proves to A that C illegally distributed copies of content.

2. The KC determines the identity behind the watermark W by computing

h−1(W) = h−1(h(IDC , rC)) = IDC , rC .

3. After determining the identity, the KC asks D for evidence that C has re-

quested the particular content. This is the certificate CertsskKC
(IDC) (or

proof of registration). If this evidence is provided, then the KC regards C as

guilty.

In summary, the KTIG protocol is an efficient protocol that uses only symmetric

encryption. However, the bandwidth requirement is high, since the transmitted

marked content is double the size of the original content. We will analyse its security

and efficiency in Section 6.4.

6.3 A Protocol based on Chameleon Encryption

In this section we describe a FaCT protocol [110] that utilises the Chameleon encryp-

tion (CE) scheme [1]. Similarly to the KTIG protocol, it does not deploy asymmetric

149

6.3 A Protocol based on Chameleon Encryption

homomorphic encryption schemes [99]. Hence it has lower computational overhead

and requires less network bandwidth than a protocol using the conventional ap-

proach.

6.3.1 Chameleon Encryption

Adelsbach et al. proposed the Chameleon encryption scheme in [1]. The intriguing

property of this scheme is that it only involves modular addition and watermarking

happens simultaneously during decryption, when a client decrypts content using his

watermarked key material.

Basic Notion. We define a content space X ⊆ R. Content in a content space (X ∈
X) is a vector of real numbers X = (x1, . . . , xn). Each vector element of content

xi, 1 ≤ i ≤ n, is also a real number in the range [0, z], where z is the maximum

value allowed for xi. We further define a watermark space W ⊆ R. A watermark

in a watermark space (W ∈ W) is a vector of real numbers W = (w1, . . . , wn). The

range of values that each watermark element can take depends on the algorithm that

is used to generate them. For example, a watermark can be bipolar, which means

wi ∈ {−1, 1}, or a watermark may be chosen from a normal (Gaussian) distribution,

as in a spread spectrum watermarking scheme [28].

Overview. The basic idea behind Chameleon encryption is as follows:

1. Encryption and decryption keys are generated. The encryption key, known as

the master table MT , contains a vector of real numbers in the same space as

the content X. The decryption key, known as the user table UT , is a slightly

different version of MT , consisting of elements of MT reduced by a small real

number. This user table UT is generated by UT = MT − FT , where FT is a

fingerprint table.

2. In order to encrypt content X, elements in the master table MT are selected

and added to the elements in X.

3. Decryption is computed by selecting the elements from UT = MT − FT and

subtracting these elements from X. Since UT is slightly different from MT ,

150

6.3 A Protocol based on Chameleon Encryption

the decryption will introduce a small “error” (watermark) into the decrypted

content, thus making this content unique to the holder of UT .

We adapt the notation of [1] to describe the four phases of the scheme in more detail.

Setup. In this phase, three types of table are generated:

• Master table MT: This is a vector of real numbers denoted by MT =

(mt1, . . . , mtL), where L = 2b and b a positive integer. Note that MT ∈ X
(the content space). Each mtα, 1 ≤ α ≤ L, is randomly selected from [0, z],

where z is the maximum value allowed for mtα.

• Fingerprint tables: These are denoted FT (1), . . . , FT (N), where N is the

number of clients. Each FT (i) = (ft
(i)
1 , . . . , ft

(i)
L), 1 ≤ i ≤ N , is a vector of

real numbers. It is required that ft
(i)
α = 1

sw
(i)
α , 1 ≤ α ≤ L, where s is a small

positive integer and w
(i)
α is an element in watermark W (i) = (w

(i)
1 , . . . , w

(i)
L).

The watermark W (i) is generated based on a watermarking scheme such as

the SS scheme described in [77]. Elements of a fingerprint table are used to

watermark elements of the master table in order to generate a user table for

the client.

• User tables: Each user table is a vector of integers UT (i) = (ut
(i)
1 , . . . , ut

(i)
L),

1 ≤ i ≤ N . It is generated as UT (i) = MT − FT (i), where ut
(i)
α = mtα −

ft
(i)
α mod p for 1 ≤ α ≤ L, p a sufficiently large integer. Elements of a user

table are used for fingerprinting and decryption of content.

Encryption. Content X = (x1, . . . , xn) is encrypted based on the master table

MT. We assume that the value of s has been determined. In order to encrypt content,

a random session key Kr is generated using a pseudo-random number generator

(PRNG). This session key Kr is then used as input to a pseudo-random sequence

generator (PRSG), which is a special type of PRNG which outputs a pseudo-random

integer sequence R with bit length n · s · b (n is the number of elements representing

the content, and b is the positive integer used to determine L). Using R, n · s
elements, (k1, . . . , kn·s), are randomly selected from the master table MT . Finally,

151

6.3 A Protocol based on Chameleon Encryption

the encrypted content E = (e1, . . . , en) is:

eβ = xβ +
s∑

j=1

ks(β−1)+j mod p for 1 ≤ β ≤ n. (6.1)

As an example, let s = 4, R = (9, L, 8, 7, 56, . . . , 10), k1 = mt9, k2 = mtL, k3 =

mt8 and k4 = mt7. The encryption of the content’s first element x1 will be e1 =

(x1 + mt9 + mtL + mt8 + mt7) mod p.

Joint Fingerprinting and Decryption. Fingerprinting and decryption of con-

tent is carried out by first selecting the watermarked elements in the user table UT (i)

based on the identical R used for encryption. We denote elements selected from

UT (i) as (kf
1 , . . . , kf

n·s). Following the previous example, let s = 4 and kf
1 = ut

(i)
9 ,

kf
2 = ut

(i)
L , and so on. The watermarked content X(i) = (x

(i)
1 , . . . , x

(i)
n) is obtained

during decryption of the encrypted content E = (e1, . . . , en) as follows:

x
(i)
β = eβ −

s∑

j=1

kf
s(β−1)+j mod p for 1 ≤ β ≤ n. (6.2)

Continuing from the previous example, decryption of the first element is:

x
(i)
1 = (e1 − (ut

(i)
9 + ut

(i)
L + ut

(i)
8 + ut

(i)
7)) mod p

= (x1 + ft
(i)
9 + ft

(i)
L + ft

(i)
8 + ft

(i)
7) mod p.

Remark. Recall that for the generation of the fingerprint table we require that

ft
(i)
α = 1

sw
(i)
α , for w

(i)
α an element of a watermark W (i) = (w

(i)
1 , . . . , w

(i)
n). So for

the example shown above, we have ft
(i)
9 = 1

sf
(i)
9 , and so on. This gives us x1 +

1
4w

(i)
9 + 1

4w
(i)
L + 1

4w
(i)
8 + 1

4w
(i)
7 , where (1

4w
(i)
9 + 1

4w
(i)
L + 1

4w
(i)
8 + 1

4w
(i)
7) has similar

random distribution to w
(i)
1 , which conforms to the distribution of the underlying

watermarking scheme. Due to this, robustness of the watermark embedded into

content is equal to that of the watermarking scheme used.

Detection. If we denote (g
(i)
1 , . . . , g

(i)
s·n) as a vector where g

(i)
β = ft

(i)
β , (for example,

g
(i)
1 = ft

(i)
9 , g

(i)
2 = ft

(i)
L), then a watermark Ŵ (i) = (ŵ

(i)
1 , . . . , ŵ

(i)
n) can be extracted

from a found copy of content X̂(i) = (x̂
(i)
1 , . . . , x̂

(i)
n) using the original content X =

152

6.3 A Protocol based on Chameleon Encryption

(x1, . . . , xn) as follows:

ŵ
(i)
β = xβ − x̂

(i)
β =

s∑

j=1

g
(i)
s(β−1)+j , for 1 ≤ β ≤ n. (6.3)

Again, using the example given previously, this can be shown as ŵ
(i)
1 = x1 − x̂

(i)
1

= x1 − (x1 + ft
(i)
9 + ft

(i)
L + ft

(i)
8 + ft

(i)
7). This extracted watermark Ŵ (i) is then

compared with the original watermark W (i) to measure their similarity by:

Sim(Ŵ (i), W (i)) =
Ŵ (i)W (i)

√
Ŵ (i)Ŵ (i)

.

If Sim(Ŵ (i), W (i)) > t, where t is a predetermined threshold, it means that the

detection of the watermark is successful.

Remark. As mentioned in [1], the modulo operator of all the above operations only

allows computation of integers, but MT , FT and X are all based on real numbers.

This issue can be addressed by representing a real value as an integer by scaling. As

an illustrative example, 15.687 can be represented as 15687 or 1568700, depending

on the requirements of the scheme. Hence we say that there is a one-to-one mapping

from [0, z] ∈ R to [0, Z] ∈ Z.

6.3.2 The CE Protocol

In this section we present a FaCT protocol using the Chameleon encryption scheme

with new and desirable properties. We call this the CE protocol.

Fundamentals. The CE protocol involves four parties. These are C, D, a KC

and A. The KC is tasked to generate the Chameleon tables for C and D. It also

plays the role of a CA. The KC and A are fully trusted. This protocol provides

traceability, framing resistance and non-repudiation of redistribution.

Environment. The CE protocol assumes that D has ample computing resources

since many clients may contact D at the same time to request content. However,

C can have limited computing resources due to the computational efficiency of the

Chameleon encryption scheme. It also requires public key support and a secure

channel. The KC is an offline trusted third party and is only involved in the initial

153

6.3 A Protocol based on Chameleon Encryption

setup phase and when there is a dispute between C and D. The main building

blocks are digital watermarking schemes, the Chameleon encryption scheme and

digital signature schemes. Table 6.2 shows the design framework.

Table 6.2: The Design Framework of the CE Protocol
Fundamentals

Parties Involved C, D, A, KC = CA + WCA
Trust Assumptions KC and A are fully trusted
Security Properties Traceability (TR), Framing resistance (FR),

Non-repudiation of redistribution (NR)

Environment

Comp. Resources D have ample resources
Flexibility: C may have limited resources

Sec. comm. Support Required
Pub. Key Support Required
TTPs offline TTP (KC)
Building Blocks Digital watermarking scheme,

Chameleon encryption scheme
and digital signature scheme

Initial Setup. In this phase, D and C register their details with the KC, including

registering their public keys for digital signature schemes. More importantly, the

KC provides D and C with Chameleon encryption and decryption key materials that

can be used for many protocol sessions. Figure 6.4 shows the protocol messages and

in the following we describe the protocol steps:

Before

1

content
KC → C

{

[IDC , pvkC]SIGsskKC

}

AKE
:

distribution

Initial Setup:

KC → D :
{

[IDD, pvkD]SIGsskKC

}

AKE

KC → C
{

UTC , [UTC]sskKC

}

AKE
:

KC → D : {

MTDC , [MTDC]sskKC

}

AKE

C&D → KC {Request authenticated keys}
AKE:

Figure 6.4: CE Protocol – Initial Setup

(I) C and D register with the KC to obtain authenticated key materials.

1. C and D send their respective public verification keys pvkC and pvkD, together

with their identity information to the KC.

(II) The KC generates and provides C and D with the authenticated keys.

154

6.3 A Protocol based on Chameleon Encryption

2. Upon receiving the registration requests from C and D, the KC signs the

public verification keys together with C’s and D’s identity information. The

resulting signatures, as shown in Figure 6.4, are passed to C and D.

(III) C and D request key materials from the KC.

3. Upon receiving the registration requests from C and D, the KC runs the Setup

phase of the Chameleon encryption scheme to produce a master table MTDC , a

client fingerprint table FTC and a client user table UTC = MTDC−FTC . The

master table MTDC and the user table UTC are signed by the KC, resulting

in two signatures [MTDC]sskKC
and [UTC]sskKC

.

(IV) The KC sends the key materials to C and D.

4. The master table MTDC is passed to D. This master table is intended for D to

encrypt content specifically for C. The user table UTC is passed to C. From

here onwards C and D can then use their respective user table and master

table to conduct many Content Watermarking and Distribution sessions

without further contacting the KC. This means key distribution is a one-time

process.

Content Watermarking and Distribution. In this phase C requests content from

D, and D watermarks content and sends the marked content to C. Figure 6.5 shows

the protocol messages and we describe the protocol steps as follows:

2

Content

distribution

C → D

{

pvkC ,AGR, [IDC , pvkC]SIGsskKC
, [AGR]SIGsskC

}

AKE

:

Content Watermarking and Distribution:

D → C

{

Kr, E
v, [Kr, E

v, [AGR]SIGsskC
,AGR]SIGsskD

}

AKE

:

Figure 6.5: CE Protocol – Content Watermarking and Distribution

(I) C requests content and approves a content agreement with D.

1. C sends a content request to D. This contains C’s public key and the signature

generated by the KC. At the same time C signs an agreement AGR that

155

6.3 A Protocol based on Chameleon Encryption

contains the description of content and the licensing terms. The resulting

signature is [AGR]SIGsskC
. This agreement may be put up on the website

owned by D. This signature is also sent to D.

(II) D produces a marked copy of the requested content and sends it to C.

2. D verifies [AGR]SIGsskC
and generates a client’s watermark V C . This water-

mark V C is embedded into content X. We denote content with V C embedded

as Xv = (xv
1, . . . , x

v
n).

Xv ← [X, V C]EMBwmkV
.

The reason for embedding V C is so that D is able to trace and match C

with the client’s record from copies of content that D has found. In this case

D can generate and embed V C using any watermarking scheme. After that,

D runs the Encryption phase of the Chameleon encryption scheme. Recall

from Section 6.3.1 that this means D generates Kr using a PRNG, and Kr

is then used as an input to a PRSG to generate a pseudo-random sequence

R. Elements of master table MTDC are chosen based on R to encrypt Xv, as

shown in (6.1). We denote the encrypted marked content as Ev. This is then

signed together with Kr, the agreement AGR and C’s signature [AGR]SIGsskC
.

The signature is represented as:

[Kr, E
v, [AGR]SIGsskC

,AGR]SIGsskD
.

This signature is then sent together with Kr and Ev to C.

3. C verifies [Kr, E
v, [AGR]SIGsskC

,AGR]SIGsskD
and runs the Joint Finger-

printing and Decryption phase of the Chameleon encryption scheme. This

means C uses Kr as input to the PRSG to generate R, and elements of his

user table UTC are selected based on R to decrypt Ev. At the same time as

decryption, a second watermark WC is embedded into this content, as shown

in (6.2). We denote the final decrypted content with two embedded water-

marks as Xvw.

Identification and Dispute Resolution. Figure 6.6 shows the protocol mes-

sages and the protocol steps are presented as follows:

156

6.3 A Protocol based on Chameleon Encryption

{true, false} ← [X̂, V C , X]DETwmk

{similar/not similar}
AKE

:D → A

3

D :

{Xv,Kr, E
v, X̂,AGR, [Kr, E

v, [AGR]SIGsskC
,AGR]SIGsskD

,

After

content

distribution

A→ KC {W}
AKE:

KC Sim(W,WC):

KC → A :

Identification and Dispute Resolution:

[AGR]SIGsskC
}AKE

Figure 6.6: CE Protocol – Identification and Dispute Resolution

(I) D detects a watermark from the found copy of content in order to identify the

client that owns the content.

1. When a suspicious copy of content X̂ is found, D tries to detect watermark

V C based on the watermarking scheme deployed. If the watermark is detected,

then D proceeds to match V C to the client’s identity from their records.

(II) D proves to A that C illegally distributed copies of content.

2. After identifying C based on the watermark V C , D proves to a third party

that C has illegally distributed copies of content. In this case, D sends Xv,

Kr, Ev, X̂, AGR, [Kr, E
v, [AGR]SIGsskC

,AGR]SIGsskD
and [AGR]SIGsskC

to A.

After A verifies the signatures to confirm the agreement between C and D on

the content, A extracts W from X̂ based on (6.3). After that, A gives W to

the KC and requests the KC to run Sim(W, WC). If the watermark is detected,

the KC retrieves the associated identity of C and sends the information to A

for A to decide whether C is guilty or not.

6.3.3 Alternative Approaches

We note that there are alternative ways in which this Chameleon encryption ap-

proach to fair content tracing could be deployed:

• CE protocol with always online KC. If the KC is always online, it is possible to

design the protocol so that there is no need for D and C to store the master

table MTDC and the user table UTC , respectively. This is achieved by the

157

6.4 Analysis

KC holding all three tables. When C wishes to obtain content, D contacts the

KC with authenticated information of C. Then the KC generates the pseudo-

random sequence R and uses the sequence to select the elements from MTDC

and UTC . Every s elements are added together. These newly selected and

added elements from MTDC (and UTC) become the encryption key (and joint

fingerprinting and decryption key) for D (and C).

• CE protocol with reduced client-KC contact. If contacting the KC by C is an

issue during key distribution, the protocol can be modified so that the user ta-

ble UTC is delivered to C through D. This can be done by the KC encrypting

and signing the user table UTC based on conventional cryptographic primi-

tives, and giving UTC to D, who then forwards the table to C. In this case,

C only needs to communicate with D for the entire execution of the protocol.

The CE protocol would thus seem to offer some interesting trade-offs between stor-

age restrictions and operational contact with a trusted third party, allowing it to

be tailored to different application environments. In summary, the CE protocol

mitigates the requirement of a homomorphic encryption scheme. At the same time,

alternative designs can be used for different application requirements. By doing so it

provides several advantages compared to conventional protocols using homomorphic

encryption schemes such as the MW and LYTC protocols (see Sections 3.7 and 5.2).

It also holds a few advantages when compared to the WP and KTIG protocols

(see Sections 5.3 and 6.2). However, it does involve certain trade-offs, especially on

storage size. We will discuss these in the next section.

6.4 Analysis

In the following we give security analysis and performance comparisons of the pro-

tocols that we have discussed.

6.4.1 Security

In this section we analyse the security of the FaCT protocols we have discussed.

158

6.4 Analysis

Traceability. In the KTIG protocol, traceability is assured by the binary water-

mark W embedded during the selection of content packets and the decryption of the

encrypted packets by C. D can extract this watermark W when an illegal copy is

found and ask the KC to reveal C’s identity.

In the CE protocol, traceability is assured, since D can trace its content to C

through the watermark V C , and also that the KC can detect watermark WC to

identify C. In addition, C has no knowledge of WC and thus cannot simply remove

the watermark from content. C may attempt to remove WC based on knowledge

of the user table UTC of the Chameleon encryption scheme. Such an attempt is

identical to removing a watermark W from marked content, which subsequently

means defeating the robustness and collusion resistance of the underlying digital

watermarking scheme.

The reason is that the user table UTC is generated by subtracting the fingerprint

table FT (i) from the master table MTDC , and the master table MTDC is derived

from the same space as content X, that is MTDC ∈ X . Similarly, the elements in the

fingerprint table FT (i) have the same statistical properties of a watermark generated

from a watermarking scheme. Although the value of the elements in FT (i) have been

fractioned by s, as mentioned in [1], this can be compensated by generating a higher

number of elements for FT (i), which means having a larger value for L. So, given

MTDC ∈ X and FT (i) ∈ W, the user table UTC is statistically identical to a marked

content, and our earlier statement holds.

We also note that Chameleon encryption has been shown to be semantically secure,

which means that an attacker, who is not any of the parties involved in the protocol,

learns nothing from the encrypted content [1]. In addition, traceability may be

improved if a more effective watermark coding method is devised, such as the recent

improvement in watermark coding for Chameleon encryption proposed in [76].

Framing Resistance. In the KTIG protocol, only the KC knows watermark W .

D has no knowledge of W since D does not have the unique key given to C. Without

this key D cannot know which content packets are selected and decrypted by C and

thus has no way to determine the watermark W embedded into content. It also

relies on the secrecy of the invertible function h(.). Kuribayashi and Tanaka did not

consider and discuss the scenario where D extracts watermark from a found copy of

content and then embeds this watermark into other contents to frame C, and hence

159

6.4 Analysis

the KTIG protocol is susceptible to the unbinding attack.

In the CE protocol, D may try to learn the watermark WC based on his master table

MTDC . We note that this is equivalent to learning a watermark W generated using

a watermarking scheme based on only the original content X. Recall that X ∈ X
and MTDC ∈ X (Section 6.3.1). This means that the master table MTDC has iden-

tical statistical distribution to content X. Similarly, WC has the same distribution

as a watermark W generated using a watermarking scheme. Hence guessing WC

given MTDC is akin to guessing W with only possession of the original content X.

This brings us to the identical framing resistant settings of the conventional FaCT

protocols such as the LYTC protocol, where D has the original content X, but the

watermark W is generated by other parties.

The CE protocol also addresses the unbinding attack, since there is a binding state-

ment that links the marked copy Xvw received by the client (and all similar copies

where WC can be detected) to the agreement AGR. This is achieved through the

signature [Kr, E
v, [AGR]SIGsskC

,AGR]SIGsskD
generated on the marked copy, the

client’s signature and the agreement. Thus framing resistance is assured as long as

the marked copy Xvw and the user table UTC are kept secret by C.

Non-repudiation of Redistribution. In the KTIG protocol, non-repudiation of

redistribution is provided through the successful detection of watermark W by the

KC. Furthermore, given the detected W , the KC can reveal the identity of C based

on C’s registration information and the records stored by the KC.

In the CE protocol, C cannot repudiate that he illegally distributed content because:

• there exists a signature [AGR]SIGsskC
, which binds C to the agreement AGR

that specifies the content Xvw.

• when the watermark W , which can be matched to C, is detected, the identity

of C is revealed by the KC.

Based on this information, A demonstrates that C is guilty. Note that the agree-

ment AGR plays an important role as it contains the description of content that

will eventually be used to confirm that the illegal content found X̂ is indeed a

copy of the original X (which is similar to Xvw). Thus, C cannot deny hav-

160

6.4 Analysis

ing illegally distributed copies of content if A, with information gathered from D

and the KC, demonstrates that this is the case based on the verified signature

[Kr, E
v, [AGR]SIGsskC

,AGR]SIGsskD
and the detected watermark W .

Summary. Assuming the security of the underlying building blocks, traceability,

framing resistance and non-repudiation of redistribution are provided in the KTIG

and CE protocols. However, for the KTIG protocol, in addition to the security of

the underlying building blocks, security relies on keeping the invertible function h(.)

secret. Unfortunately, Kuribayashi and Tanaka did not provide details as to how to

construct the invertible function h(.).

Table 6.3: Summary of the Security Analysis
Protocols TR FR NR Conditions
KTIG X X X Relies on h(.) being a secret function.

Susceptible to unbinding attack.
CE X X X Relies on the security of Chameleon encryption.

6.4.2 Efficiency

In this section we examine the performance of the protocols that we have discussed

and the efficiency comparison between them is shown in Table 6.4. For the purpose

of our discussion, as stated in Section 6.3.1, L is the number of entries in MT .

Bandwidth. For the CE protocol, due to the mechanism in Chameleon encryption

as presented in Section 6.3.1, each encrypted element of content has similar size to

the original element. If we assume the value for |Z| is 16 or 32 bits (e.g. images or

video frame), and n = 10000, then the marked content size is 10000 · 16 bits ≈ 20

KByte or 10000·32 bits ≈ 40 MByte, which is much smaller compared to the content

size in the MW protocol previously described in Section 3.7 and other protocols that

deploy asymmetric homomorphic encryption schemes to embed watermarks in the

encrypted domain.

For the KTIG protocol, the size of the encrypted marked content is 2n|Z|. This is

assuming that there are n packets of content and the size of each packet is |Z| bits.

The size of the encrypted marked content is double the original content size (i.e.

n|Z|) because for each packet of content, an exact copy is produced, as illustrated

in the Content Watermarking and Distribution phase in Section 6.3.

161

6.4 Analysis

Trusted Third Parties. Both the KTIG and CE protocols deploy an offline trusted

third party. This means that the trusted third party can be offline after necessary

information (i.e. key materials) are provided to the distributor and/or the client in

the Initial Setup phase.

Furthermore, the adoption of Chameleon encryption in the CE protocol means that

once the key materials are acquired, C can subsequently request content from D

many times, without further involving the trusted third party. This is beneficial

compared to the KTIG protocol, where for each content request by C, new regis-

tration information and a new key must be obtained by C from the trusted third

party.

Computation. In the KTIG protocol, the computational requirements are the

embedding of the watermark and the symmetric encryption of the content packets.

We denote symmetric encryption by S, as described in Section 3.6. We assume

that there are 2n content packets, with n original content packets and n duplicates.

This is required, as described in Section 6.3, where one packet is embedded with

watermark “0”, and another identical packet is embedded with watermark “1”. So

for D, computations involve 2nA to embed the watermarks into the 2n packets and

2nS to encrypt them. While for C, the computation involves decryption of content,

where the worst case is to decrypt all 2n packets to get the correct packets of content.

Hence C needs 2nS computations.

For the CE protocol, D requires nsA computation to encrypt the content, where

n is the number of elements in the watermark and content, while s is the number

of elements selected from the master table. As described in Section 6.3.1, for each

element of content, s elements from the master table are added, so all together there

are ns additions. Assuming subtraction has the same computational requirement to

addition, then C also requires nsA computation to decrypt, while simultaneously

embedding a watermark into content.

Storage. For the KTIG protocol, D needs to store the index key table and the

watermark used to mark each of the content packets. Since Kuribayashi and Tanaka

did not provide much detail on the generation of this table, we hypothetically assume

that there are L elements in the table, and each element has bit size |Z|, following

the same notation as the CE protocol. Hence D stores L|Z| bits of key table and

n|Z| bits of watermark. C only requires the key DKC containing n elements to

162

6.4 Analysis

decrypt the encrypted marked content. For simplicity, we assume that each element

in this key has bit size |Z|. So C requires n|Z| bits to store the key. However, C can

optionally purge this key after the encrypted marked content is decrypted. If this

is the case then C does not require any storage in terms of obtaining the marked

content. This is shown as (0) in Table 6.4.

For the CE protocol, D stores the master table MTDC and C stores the user table

UTC . Since each of these tables has L elements, and each element has value Z, the

storage requirement for D and C is L|Z|. As an illustration, in the following we

borrow a simple but practical example from [1]. We assume a content image with

n = 10000 significant coefficients, where each coefficients is of length 16 bits. Then

Z = 216. Suppose L = 8Z then L = 8(216) = 219, where L = 8Z achieves the

statistical quality required for the master table MTDC as mentioned in [1]. Hence

the size of the tables MTDC and UTC for D and C is L|Z| = 8(16)(216) = 223 bits

= 1 MByte, which can be acceptable in terms of current storage capacity. However,

as we have also discussed in the alternative approaches in Section 6.3.3, if the KC is

always online, then the key size will be n|Z| = 10000(16) bits = 20KBytes, which is

much smaller. This is because the KC stores all tables, including MTDC and UTC ,

and only passes the selected and added key streams from MTDC to D, and the key

streams from UTC to C.

Table 6.4: Efficiency Comparisons between Protocols with offline Trusted Third Parties

Pro. Bandwidth1 TTP Computation2 Storage1

KTIG σ[X ′]EK
= 2n|Z| offline C: 2nS C: n|Z|(0)

KC D: 2n(A + S) D: (L + n)|Z|
CE Ev = n|Z| offline C: nsA C: L|Z| (n|Z|)

KC3 D: nsA D: L|Z| (n|Z|)
1 |Z| < |m|, |n| < |L|
2 E=O(k3), M=O(k2), A=O(k), S=E/100
3 One-off process

Summary. From Table 6.4 and the above analysis, we observe that the KTIG

protocol is efficient as it only involves a symmetric encryption scheme, but requires

the content size to be doubled. For the CE protocol, its major advantage is the one-

off process by the KC in providing the key materials to D and C. This means that

after this process, the KC stays offline since C can request many contents in many

interactions with D using the key materials provided. This is in contrast to the

KTIG protocol where, for each content request, C needs to contact the KC (or the

WCA). In addition, it has more assurance in term of security since the underlying

163

6.5 Summary

Chameleon encryption scheme has been shown to be semantically secure. We do

note that both the KTIG and CE protocols come at the expense of greater key

storage requirements, as shown in Table 6.4.

6.5 Summary

In this chapter we examined FaCT protocols with offline trusted third parties, where

a KC is tasked to generate client watermarks or key materials. We examined the

KTIG protocol [81] and compared its security and efficiency with a protocol based

on Chameleon encryption [110] that we proposed. We showed that our proposal, as

compared to the KTIG protocol, is advantageous in the sense that the initial setup

is a one-time process. This means that once C obtains the key material, C can

request many contents from D without needing to communicate with the KC. Our

proposal is also more computationally efficient compared to protocols that deploy

asymmetric homomorphic encryption.

164

Chapter 7

FaCT Protocols with Trusted

Hardware

Contents

7.1 Overview . 166

7.2 The Fan-Chen-Sun Protocol 166

7.3 Protocols based on TPM 171

7.3.1 Trusted Platform Modules 172

7.3.2 A Protocol Based on DAA 177

7.3.3 A Protocol Based on a Privacy CA 183

7.4 Analysis . 187

7.4.1 Security . 187

7.4.2 Efficiency . 190

7.5 Summary . 191

This chapter investigates FaCT protocols that deploy trusted hardware. We discuss

one existing proposal and propose two protocols based on the Trusted Platform Mod-

ule (TPM). The existing proposal assumes general trusted hardware without discus-

sion on the realisation of such hardware. Hence our proposals provide more explicit

constructions. Protocols with trusted hardware are advantageous for distributed com-

puting environments as there is no central trusted third party to be contacted during

content distribution.

165

7.1 Overview

7.1 Overview

FaCT protocols with trusted hardware deploy hardware that is normally tamper-

proof and is either embedded in the distributor’s computing device or in the client’s

computing device (or both).

Tomsich and Katzenbeisser [129] proposed one of the earliest approaches to pro-

tecting content distribution using trusted hardware. A general infrastructure that

can be deployed for copyright protection of content is suggested. It was mentioned

that the infrastructure can also be used for content tracing. The basic idea of the

infrastructure is for either the client or the distributor to deploy trusted hardware

in their computing platform. The watermark is generated by this trusted hardware

in such a way that it is not possible that it can be manipulated by the client or the

distributor.

A recent FaCT protocol proposed by Fan et al. [46] uses a similar idea by letting

the trusted hardware generate the watermark. However, it deals with the trusted

hardware only at an abstract level, without providing a practical example of trusted

hardware that can be deployed. Hence it can be seen as incomplete. We examine

this protocol in Section 7.2.

In view of this incompleteness, We then propose two new protocols based on the

Trusted Computing Platform [6, 95]. One of these protocols, which is based on

Direct Anonymous Attestation, was jointly devised by Adrian Leung and published

in [86]. Our proposal deploys a Trusted Platform Module (TPM), which is the

trusted hardware defined under the Trusted Computing Platform. The technology

has been included as an integral component in many computing devices such as

laptops [126]. In addition, all the protocols we describe provide anonymity and

unlinkability.

7.2 The Fan-Chen-Sun Protocol

Fan, Chen and Sun (FCS) proposed a protocol that deploys trusted hardware in [46].

Fundamentals. It involves five parties and trusted hardware TD that resides in

the computing platform of D. The five parties are C, D, a CA, a WCA and A. The

166

7.2 The Fan-Chen-Sun Protocol

CA, WCA and A are fully trusted. The FCS protocol provides traceability, framing

resistance, non-repudiation of redistribution and anonymity and unlinkability.

Environment. As C and D are required to perform homomorphic encryption for

watermarking in the encrypted domain, we assume that both of them have ample

resources. It also requires public key support, since in the protocol C and D generate

and verify digital signatures for the purpose of data origin authentication and non-

repudiation of redistribution. A secure communication channel is implicitly assumed

to be in place. Trusted hardware TD is responsible for generating client watermarks,

and possesses the WCA’s public and private keys. The main building blocks are dig-

ital watermarking schemes, homomorphic encryption schemes and digital signature

schemes. Table 7.1 shows the design framework of the FCS protocol.

In general, the FCS protocol follows the design of the LYTC protocol described

in Section 5.2, but replaces the communication with the watermark certification

authority WCA by communication with the trusted hardware TD.

Table 7.1: The Design Framework of the FCS Protocol
Fundamentals

Parties Involved C, D, A, CA, WCA
Trust Assumptions CA, WCA and A are fully trusted
Security Properties Traceability (TR), Framing resistance (FR),

Non-repudiation of redistribution (NR),
Anonymity and unlinkability (AU)

Environment

Comp. Resources Assume D and C have ample resources
Sec. comm. Support Required
Pub. Key Support Required
TTPs Trusted hardware TD

Building Blocks Digital watermarking scheme,
homomorphic encryption scheme
and digital signature scheme

Initial Setup. This phase is identical to the initial setup phase of the LYTC

protocol (see Section 5.2). In other words, C and D obtain certified public keys from

the CA, as shown in Figure 7.1. In addition, C obtains anonymous keys so that he

can request content from D without revealing his identity. We note that C has

long term signature key pairs (sskC , pvkC) and encryption key pairs (hdkC , hekC),

anonymous signature key pairs (ssk∗
C , pvk∗

C) and encryption key pairs (hdk∗
C , hek∗

C),

and an anonymous certificate CertsskCA
(pvk∗

C , hek∗
C).

167

7.2 The Fan-Chen-Sun Protocol

It is also assumed that the trusted hardware TD holds the WCA signing and encryp-

tion key pairs, (sskWCA, pvkWCA) and (hdkWCA, hekWCA). These key pairs may be

negotiated between the WCA and the CA even before this phase, so that the keys

can be embedded securely in the trusted hardware TD. Figure 7.1 illustrates the

protocol messages.

Before

1

content

CA → C

{

[hekC , pvkC , IDC]SIGsskCA

}

AKE
: distribution

Initial Setup:

CA → D :
{

[hekD, pvkD, IDD]SIGsskCA

}

AKE

C → CA

{

pvk∗

C , hek∗

C , [pvk∗

C , hek∗

C]SIGsskC
, [hekC , pvkC , IDC]SIGsskCA

}

AKE
:

CA → C : {CertsskCA
(pvk∗

C , hek∗

C)}
AKE

C&D → CA {Request authenticated keys}
AKE:

Figure 7.1: FCS Protocol – Initial Setup

Content Watermarking and Distribution. This is assisted by the trusted hard-

ware TD in the computing device of D. Figure 7.2 shows the protocol messages and

in the following we present the protocol steps:

2

D → TD [CertsskCA
(pvk∗

C , hek∗

C), [pvk∗, hek∗, IDC]SIGssk∗
]HEhekWCA

:

TD → D [W]HEhek∗
, [W]HEhekWCA

,:

Content

distribution

C → D
{[CertsskCA

(pvk∗

C , hek∗

C), [pvk∗, hek∗, IDC]SIGssk∗
]HEhekWCA

,:

Content Watermarking and Distribution:

AGR, pvk∗, hek∗, [pvk∗, hek∗,AGR]SIGssk∗
}AKE

[[W]HEhek∗
, pvk∗, hek∗, [W]HEhekWCA

]SIGsskWCA

D → C {[X ′′]HEhek∗
}
AKE

:

Figure 7.2: FCS Protocol – Content Watermarking and Distribution

(I) C requests content and approves a content agreement with D.

1. C requests content from D by first checking the purchase agreement AGR

displayed on D’s website. This AGR states the rights and licensing terms of

the specific content.

2. C randomly generates one-time signature and encryption key pairs (pvk∗, ssk∗)

and (hek∗, hdk∗). C signs the agreement AGR and the randomly generated

public keys as [pvk∗, hek∗,AGR]SIGssk∗
. C also signs C’s identity and the

anonymous public keys as [pvk∗, hek∗, IDC]SIGssk∗
and encrypts this signature

168

7.2 The Fan-Chen-Sun Protocol

and CertsskCA
(pvk∗

C , hek∗
C) using the WCA’s public encryption key:

[CertsskCA
(pvk∗

C , hek∗
C), [pvk∗, hek∗, IDC]SIGssk∗

]HEhekWCA
.

C sends this encrypted message, AGR, pvk∗, hek∗ and [pvk∗, hek∗,AGR]SIGssk∗

to D.

(II) D and the trusted hardware generate the watermark. The trusted hardware

verifies the watermark to be well-formed.

3. Upon receiving the message from C, D first verifies the signature and checks

that the certificate is valid. If this is the case then D inputs the encrypted

message,

[CertsskCA
(pvk∗

C , hek∗
C), [pvk∗, hek∗, IDC]SIGssk∗

]HEhekWCA
,

into the trusted hardware TD.

4. The trusted hardware TD decrypts the encrypted message and verifies the sig-

nature [pvk∗, hek∗, IDC]SIGssk∗
. If the signature is valid, TD generates a client

watermark W . Then TD encrypts the watermark using hek∗ and hekWCA based

on a homomorphic encryption scheme, resulting in [W]HEhek∗
and [W]HEhekWCA

.

The trusted hardware TD also generates a signature:

[[W]HEhek∗
, pvk∗, hek∗, [W]HEhekWCA

]SIGsskWCA
.

The two encrypted watermarks and the signature are returned to D.

(III) D produces a marked copy of the requested content and sends it to C.

5. Upon receiving the encrypted watermarks and the signature from the trusted

hardware TD, D generates a unique watermark V specific to this transaction.

D embeds V into content X using any preferred digital watermarking scheme:

X ′ ← [X, V]EMBwmkV
.

This watermark V is required so that when a copy of content is found, D

can detect V to identify C. Next D embeds watermark W into the content

169

7.2 The Fan-Chen-Sun Protocol

element-by-element using the encrypted watermark provided by the trusted

hardware as follows:

[x′
i]HEhek∗

· [wi]HEhek∗

= [x′
i ◦ wi]HEhek∗

= [x
′′

i]HEhek∗



 1 ≤ i ≤ n,

where n represents the number of elements in the watermark and content, and

◦ represents either modular addition, modular multiplication or bit-wise XOR

depending on the underlying homomorphic encryption scheme. The encrypted

marked content is denoted by:

[X ′′]HEhek∗
= ([x

′′

1]HEhek∗
, [x

′′

2]HEhek∗
, . . . , [x

′′

n]HEhek∗
).

D stores in his database entry the watermark V , the agreement AGR, the

client’s anonymous keys, all the signatures and encrypted watermarks. Finally,

D sends [X ′′]HEhek∗
to C.

6. C decrypts [X ′′]HEhek∗
to obtain the marked content X ′′.

Identification and Dispute Resolution.

(I) D detects a watermark from the found copy of content in order to identify the

client that owns the content.

1. When an illegal copy of content X̂ is found, D detects watermark V from this

copy. If V is detected, then D can identify the perpetrator that distributed X̂

illegally.

(II) D proves to A that C illegally distributed copies of content.

2. D sends the encrypted watermarks, the agreement, client certificate and the

signatures stored in the database, along with the found copy X̂ to A. This is

shown in Figure 7.3.

3. A verifies the certificate and signatures. If these are valid, A asks the WCA

to decrypt [W]HEhekWCA
(the protocol assumes that the trusted hardware TD

and the WCA shares the same encryption key pairs). Next A performs a

170

7.3 Protocols based on TPM

correctness check on [W]HEhek∗
. This is done by encrypting the watermark

W obtained from the WCA and comparing the result with [W]HEhek∗
received

from D. If both are identical then A proceeds to detect watermark W from

the found copy X̂:

true← [X̂, W, X ′]DETwmk
.

If the detection returns true, A asks the WCA again to decrypt

[CertsskCA
(pvkC , hekC), [pvk∗, hek∗, IDC]SIGssk∗

]HEhekWCA

to reveal the identity of C.

{true, false} ← [X̂, V, X]DETwmk

:D → A

3

D :

After

content

distribution

A :

Identification and Dispute Resolution:

true← [X̂,W,X ′]DETwmk

A→ WCA

{
[CertsskCA

(pvk∗

C , hek∗

C), [pvk∗, hek∗, IDC]SIGssk∗
]HEhekWCA

}

AKE
:

WCA → A {IDC}AKE:

A→ WCA {watermark info?}
AKE:

WCA → A {watermark info}
AKE:

[W]HEhek∗
, [W]HEhekWCA

, X ′, X̂}AKE

{[CertsskCA
(pvk∗

C , hek∗

C), [pvk∗, hek∗, IDC]SIGssk∗
]HEhekWCA

,

AGR, pvk∗, hek∗, [pvk∗, hek∗,AGR]SIGssk∗
,

[[W]HEhek∗
, pvk∗, hek∗, [W]HEhekWCA

]SIGsskWCA
,

Figure 7.3: FCS Protocol – Identification and Dispute Resolution

In summary, the main idea of the FCS protocol is to shift the responsibility of the

WCA in the LYTC protocol to trusted hardware embedded in the computing device

of D. Although this seems to avoid the requirement of a centralised trusted third

party (i.e. the WCA), it actually only moves the requirement to centralised trusted

hardware. This is because now the trusted hardware TD is responsible for processing

many client requests and hence has similar responsibility of that of a WCA.

7.3 Protocols based on TPM

In this section, we offer a practical approach to designing protocols with trusted

hardware based on the Trusted Platform Module (TPM) defined in the trusted

computing platform initiative [95, 126]. A trusted computing platform is a com-

puting device that has a TPM embedded and activated. The trusted computing

171

7.3 Protocols based on TPM

platform initiative has gained major support from the key players in industry and is

also gaining increased interest for practical applications [126]. Therefore, designing

FaCT protocols based on a TPM can take advantage of the many well-defined prop-

erties in this trusted computing platform compared to the general infrastructure of

Tomsich-Katzenbeisser mentioned in Section 7.1 and the abstract trusted hardware

of the FCS proposals described in Section 7.2.

7.3.1 Trusted Platform Modules

A TPM serves as the foundation of trust, which is termed the root of trust [6]. It

means that a computing platform (e.g. a mobile device or laptop) that has a TPM

embedded in it can use the TPM to convince others of its trustworthiness.

The TPM is also used to measure the integrity of all the processes and software

in the computing platform [6, 95]. In other words, the TPM also functions as

a checkpoint to validate whether a particular software or process adheres to the

security requirements of the computing platform. It is only when this software or

process is validated that it is allowed to run. This validation (or measurement)

is performed based on the integrity measurement, storage and reporting (IMSR)

mechanisms within the TPM [86]. The measurement information is known as the

integrity metrics and is stored in the TPM. The core components of the IMSR are

the three roots of trust known as root of trust for measurement (RTM), root of trust

for storage (RTS) and root of trust for reporting (RTS). Together they play the

crucial role of ensuring that the operations (e.g. the execution of the software) in

the computing platform can be trusted. Through these roots of trust, any malicious

attempts to exploit the execution of the software will be detected. We now describe

in more detail the TPM and the roots of trust:

TPM Endorsement Key and Identities. The TPM can be viewed as an en-

hanced smart card and contains an encryption key pair known as the endorsement

key (EK). Together with a digital certificate, this key pair serves as proof that the

TPM contained in a computing platform is genuine. The public half of the key is

used for encrypting messages. The private half of the key never leaves the TPM and

is used for decrypting encrypted messages. The EK is generated and inserted into

the TPM by a CA, which in this case is normally the TPM manufacturer.

172

7.3 Protocols based on TPM

This EK does not serve as the identity of the TPM. To create an identity, the

TPM generates another key pair, known as the attestation identity key (AIK). This

is associated with the public half of the endorsement key in such a way that an

attestation authority (i.e. a direct anonymous attestation issuer [18] or a privacy

CA [6]) is convinced of the TPM’s identity. An attestation authority has a similar

role to a certificate authority who issues anonymous certificates. This attestation

authority then attests the TPM’s identity by generating a certificate so that other

parties can verify the validity of the TPM that they are communicating with. We

will examine in more detail the creation of the TPM’s identities, in particular for

privacy protection based on direct anonymous attestation and a privacy CA, later

in this section.

Root of Trust for Measurement (RTM). Measuring the integrity of the pro-

cesses in the computing platform is the first IMSR step. This is performed using the

RTM. This is a computing engine that has the ability to carry out mathematical

calculations or logical functions, similar to the ability of a micro-processor. On the

initial start up of the computing platform, the RTM measures the processes and

software on the platform. The measured values (the integrity metrics) demonstrate

the platform’s current state, which can then be used to decide whether this platform

can be trusted or not.

Root of Trust for Storage (RTS). The main responsibility of the RTS is to store

the integrity metrics measured by the RTM. These metrics are stored in a log termed

the Stored Measurement Log (SML). The SML may be large considering the various

processes that need to be measured in today’s computing platforms. Hence it is not

feasible to store the log in the TPM itself. Instead, it is stored in the conventional

storage of a computing platform. The SML does not need to be protected as any

modification of it can be detected. This is so because a summary of the integrity

metrics stored by the SML is computed and used to check the validity of the SML.

This summary is normally the hash value of the integrity metrics. The hash value,

which can be computed based on a cryptographic hash algorithm such as SHA-2 [70],

is smaller in size than the SML. So it can be stored in the limited storage of the

TPM known as the Platform Configuration Registers (PCRs).

Root of Trust for Reporting (RTR). The main objective of the RTR is to report

the integrity metrics and the authenticity of these metrics when requested by other

173

7.3 Protocols based on TPM

parties. This is performed by:

• retrieving the integrity metrics from the SML and the corresponding PCR

values, and

• signing the PCR values using the TPM’s identities, the Attestation Identity

Key (AIK).

In summary, the TPM, together with the IMSR, are the fundamental components

of the trusted computing platform. They allow a computing platform to validate

that another computing platform can be trusted.

Direct Anonymous Attestation. Direct Anonymous Attestation (DAA) [18] is

a special type of signature scheme that can be used to anonymously authenticate a

trusted computing platform. Briefly, the DAA scheme has the following properties:

• It allows other parties to validate that a TPM in a client’s platform is genuine,

and that the TPM possesses an identity based on an AIK.

• These validations are performed without revealing the identity of the TPM to

these other parties.

• The transactions involving different AIKs from an identical client’s platform

cannot be linked together even if these other parties collude.

Due to the three properties stated above, DAA provides full anonymity and unlink-

ability. The DAA scheme consists of two phases. These are the DAA Join phase and

DAA Sign phase. It involves three parties. These are the DAA Issuer, with a similar

role to a certificate authority who generates anonymous certificates, the TPM in C’s

computing platform, and the verifier (e.g. the distributor D). We describe them in

the following:

DAA Join. The main goal of this phase is to allow the client’s computing platform

to obtain a DAA certificate from the DAA Issuer. The DAA certificate is used to

prove that the client’s computing platform can be trusted by other parties. For

simplicity, we will represent the client’s computing platform as the client C.

174

7.3 Protocols based on TPM

1. The first step is for a client to authenticate himself to the DAA Issuer based

on the TPM’s endorsement key EK. As mentioned in Section 7.3.1, this EK is

usually generated and inserted into the TPM of the client by its manufacturer.

In this case, the manufacturer acts as the CA. A certificate on the public half

of the EK is also generated by the CA as CertsskCA
(EK). Other certificates

provided by the CA to prove the authenticity of the TPM are also passed to the

DAA Issuer. We denote these certificates as C’s TPM credentials CRETPMC
.

2. Next the DAA Issuer issues a DAA certificate to the TPM. In the following

we describe how the DAA certificate is issued:

• Let (m, S, Y, R) be the public key of the DAA Issuer, in which m is an

RSA modulus (e.g. m = pq where p and q are distinct large primes), and

S, Y, R ∈ Zm are randomly generated.

• The client generates a value f and computes U = RfSv′

mod m, where

v′ is a value generated randomly to “blind” f . The value f is the secret

key of the client. The client also computes NI = ζf
I mod Γ, where ζI

is derived from the identity of the DAA Issuer, and Γ is a large prime.

The client then sends (U, NI) to the DAA Issuer, and convinces the DAA

Issuer that U and NI are correctly formed (using a zero-knowledge proof

of knowledge of a discrete logarithm [122]).

• If the DAA Issuer is convinced, it signs the message U by computing

G = (Y
USv′′

)1/e mod n, where v′′ is a random integer and e is a random

prime. The DAA Issuer then sends (G, e, v′′) to the client and proves that

G was computed correctly. The DAA Certificate for the TPM is (G, e, v),

where v = v′ + v′′.

DAA Sign. The main goal of this phase is to allow the client to authenticate a

message to other parties based on a signature. This is performed by using the DAA

certificate obtained from the previous phase. It involves the client and one other

party, which in our context will be the distributor. In the following we describe the

process:

1. The client signs a message M using the secret key f , the DAA Certificate, and

other required information. This message M can be an Attestation Identity

175

7.3 Protocols based on TPM

Key (AIK) generated by the TPM of the client. The client also computes

NV = ζf mod Γ as part of the signature computation, where ζ is an integer

that affects the degree of the client’s anonymity. We denote the generated

signature by σ.

2. The distributor verifies the signature σ. If the signature is valid then the

distributor checks that the client has a valid DAA Certificate (G, e, v) and thus

has a genuine TPM embedded. This is accomplished by a proof of knowledge

of a discrete logarithm [122] based on a set of values f, G, e and v such that

GeRfSv ≡ Y mod n. With this, the distributor is also convinced that the

message M was signed by the client using the secret key f , without knowing

what f is.

In summary, using the DAA Join and DAA Sign phases, the client obtains a DAA

Certificate (which only needs to be performed once) and can generate and sign as

many AIKs as the client wishes. The client is also able to prove to other parties

that these AIKs are valid without involving the DAA Issuer.

Full anonymity and unlinkability due to DAA. The capability of generating

many distinct but valid AIKs, together with the parameter ζ, provides full anonymity

and unlinkability. If for each transaction with the distributor the client uses a distinct

ζ, then the distributor will not be able to link these transactions to the same client.

Similarly, if a different AIK is used by the client to communicate with different

distributors then these distributors, even when they collude, will not be able to link

these transactions to a single client. More importantly, the DAA certificate does not

contain any information that can be linked to the EK of a particular TPM of the

client. This means that no parties, not even the trusted DAA issuer, can determine

the identity of the TPM that communicated with other parties. This is in contrast

to other provisions of anonymity and unlinkability, such as in the LYTC protocol,

where the CA has knowledge of the identity of the client.

Privacy CA. According to the definition by the Trusted Computing Group [126],

a Privacy CA is a trusted third party (typically well known and recognised), trusted

by both the owner (i.e. client C) and the verifier (i.e. distributor D), that will

issue AIK certificates. Recall from our discussion of the TPM endorsement key

and identities, that the AIKs are a key pair generated by a TPM as the identity of

176

7.3 Protocols based on TPM

the TPM. The role of the Privacy CA is to attest these AIKs. This means that it

generates a certificate on the public half of the AIKs. However, it does not include

the information on the EK in this certificate. In other words, when a client uses this

certificate to communicate with the distributor, the distributor is convinced that the

client is legitimate but will not be able to determine which TPM the communication

is originating from. Hence, a Privacy CA plays a similar role to a certificate authority

who issues anonymous certificates, such as the CA in the FCS protocol.

The difference between the Privacy CA and the DAA Issuer is that the Privacy CA

knows the EK of a TPM, while the DAA Issuer does not. This means that the

Privacy CA can link the EK to the AIKs and hence is able to determine the client

who deploys a TPM with this EK.

7.3.2 A Protocol Based on DAA

In this section, a FaCT protocol based on the trusted computing platform proposed

in [86] is discussed. This protocol also provides anonymity and unlinkability based

on DAA. We denote this protocol as the DAA protocol.

Fundamentals. It involves five parties and the TPM. The five parties are C, D, CA,

A and DAA Issuer. The CA and A are fully trusted. The DAA Issuer is expected

to correctly generate AIK certificates, but is allowed to collude with other parties.

The DAA protocol provides traceability, framing resistance, and full anonymity and

unlinkability. With the provision of the DAA scheme, the design of the protocol is

such that it is not possible for any party to identify C even when the DAA Issuer

and D collude. Hence C enjoys full anonymity and unlinkability compared to other

protocols where the trusted third party has the identity information of C. So for

D to prove illegal distribution of content, evidence from other means outside the

protocol execution is needed to identify C. Hence, it is a weak FaCT protocol as

defined in Section 3.3.3.

Environment. The DAA protocol assumes that both D and C have ample com-

puting resources due to the deployment of homomorphic encryption to perform

watermarking in the encrypted domain. It also assumes a secure communication

channel is in place and public key support is available. The DAA Issuer is an offline

TTP since it is only required during the initial setup. The main building blocks are

177

7.3 Protocols based on TPM

digital watermarking schemes, homomorphic encryption schemes, the DAA scheme

and digital signature schemes. Table 7.2 summarises the design framework of the

DAA protocol.

Table 7.2: The Design Framework of the DAA Protocol
Fundamentals

Parties Involved C, D, CA, A, DAA Issuer
Trust Assumptions CA and A are fully trusted

DAA Issuer is trusted to correctly generate certificates
Security Properties Traceability (TR), Framing resistance (FR),

full anonymity and unlinkability (AU)

Environment

Comp. Resources Assume D and C have ample resources
Sec. comm. Support Required
Pub. Key Support Required
TTPs Trusted Computing Platforms [126],

offline DAA Issuer
Building Blocks Digital watermarking scheme,

homomorphic encryption scheme,
the DAA scheme
and digital signature scheme

We now describe the three phases of the protocol.

Initial Setup. In this phase C obtains a DAA Certificate from the DAA Issuer.

This operation follows the DAA Join phase. We note that the DAA Join phase can

be performed before the computing platform is given to C. If this is the case then

the DAA Join phase is a one-off process. Figure 7.4 shows the protocol messages.

Before

1

content

C → DAA {CRETPMC
,CertsskCA

(EK)}
AKE

:

distribution

Initial Setup (DAA Join):

DAA → C : {DAA Cert}
AKE

Figure 7.4: DAA Protocol – Initial Setup

Content Watermarking and Distribution. In this phase C requests content from

D and D sends a marked content to C. Through the use of TPM and IMSR, C

generates the watermark and is forced to generate a well-formed one. Figure 7.5

shows the protocol messages. The protocol steps are as follows:

(I) C (or the trusted hardware) generates the watermark and the trusted hardware

verifies the watermark to be well-formed.

178

7.3 Protocols based on TPM

2

Content

distribution

C → D
{[W]HEhek∗

,VAIKC , pvk∗, hek∗, σ,AGR, [pvk∗]SIGSAIKC
,:

Content Watermarking and Distribution:

SML, [[W]HEhek∗
, hek∗,AGR]SIGssk∗

, [PCR]SIGSAIKC
}AKE

D → C {[X ′′]HEhek∗
}
AKE

:

C ⇀↽ TPM SML, PCR:

Figure 7.5: DAA Protocol – Content Watermarking and Distribution

1. C generates a watermark W based on a digital watermarking scheme (e.g.

the spread spectrum watermarking scheme presented in Figure 2.1). C also

generates an AIK key pair, (VAIKC ,SAIKC).

2. C retrieves the Stored Measurement Log (SML) and the corresponding TPM’s

Platform Configuration Register (PCR) values. C then signs the PCR values

as [PCR]SIGSAIKC
. The SML and PCR values provide the evidence that a

particular watermarking scheme was used by C to generate the watermark.

Also, the SML and PCR values provide the evidence that the watermark is

well-formed, based on the execution of an algorithm that tests the randomness

of the watermark.

(II) C requests content, provides D with the encrypted client watermark and approves

a content agreement with D.

3. C initiates the content request by negotiating with D a content agreement

AGR, without revealing C’s real identity. This agreement contains the de-

scription of content. For example, the agreement might have been pre-set on

a website hosted by D, and C just needs to download the agreement.

4. C generates an encryption key pair (hek∗, hdk∗) and a signature key pair (pvk∗,

ssk∗).

5. C encrypts the watermark W as [W]HEhek∗
using a homomorphic encryption

scheme and signs the encrypted watermark [W]HEhek∗
, the encryption key hek∗

and the agreement AGR to obtain:

[[W]HEhek∗
, hek∗,AGR]SIGssk∗

.

179

7.3 Protocols based on TPM

6. C computes ζ = H(IDC), where IDC denotes the client’s identity information.

C then creates a pseudonym, Nv = ζf , where f is the secret key generated

during the DAA join phase.

7. To prove to D that the AIK key pair (VAIKC ,SAIKC) originates from a

genuine TPM, C signs VAIKC using f , the DAA Certificate, and the other

required information. The output is the DAA signature σ (which also includes

ζ and Nv). Next, C signs pvk∗ using SAIKC as [pvk∗]SIGSAIKC
to prove that

pvk∗ is a valid verification key originating from the client’s TPM.

8. C sends to D [W]HEhek∗
, VAIKC , pvk∗, hek∗, σ, AGR, [pvk∗]SIGSAIKC

, SML,

[[W]HEhek∗
, hek∗,AGR]SIGssk∗

, [PCR]SIGSAIKC
.

(III) D produces a marked copy of the requested content and sends it to C.

9. D verifies the DAA signature σ. If the signature is valid then D is convinced

that:

• C is in possession of a legitimate DAA Certificate, which implies that a

genuine TPM is contained in C’s computing platform.

• VAIKC was signed using C’s secret key f . Even though the value of f is

never revealed, D knows that the value is linked to the value in the DAA

certificate.

10. D examines the integrity measurements of C’s platform. This is achieved by

recursively hashing the values in the SML, and then comparing them with the

corresponding PCR values. If the outcome is satisfactory, D is convinced that

the watermark W is well-formed.

11. D verifies [pvk∗]SIGSAIKC
and [[W]HEhek∗

, hek∗,AGR]SIGssk∗
. Next, D generates

a watermark V and embeds V into content X to create:

X ′ ← [X, V]EMBwmkV
.

12. Similar to the watermarking in the encrypted domain process of the Memon-

Wong protocol (Section 3.7), D encrypts every element of X ′ one-by-one using

C’s public encryption key hek∗. After that, D permutes every encrypted ele-

ment of W , which is represented as

q
(
[W]HEhek∗

)
= ([wq(1)]HEhek∗

, [wq(2)]HEhek∗
, . . . , [wq(n)]HEhek∗

).

180

7.3 Protocols based on TPM

Next, D generates an encrypted marked content as follows, using the water-

marking in the encrypted domain scheme (Section 2.3.3):

[x′
i]HEhek∗

· [q(wi)]HEhek∗

= [x′
i ◦ q(wi)]HEhek∗

= [x
′′

i]HEhek∗



 1 ≤ i ≤ n,

where ◦ represents either modular addition, modular multiplication or bit-wise

XOR depending on the underlying homomorphic encryption used. We denote

the resulting encrypted marked content by:

[X ′′]HEhek∗
= ([x

′′

1]HEhek∗
, [x

′′

2]HEhek∗
, . . . , [x

′′

n]HEhek∗
).

The encrypted marked content [X ′′]HEhek∗
is sent to C.

13. When C receives the encrypted marked content [X ′′]HEhek∗
, he decrypts it

using hdk∗ to retrieve the marked content X ′′ = X ′ ◦ q(W).

Identification and Dispute Resolution. In this phase D identifies C who il-

legally distributed content, based on a found copy of content and the watermark

embedded in it.

{true, false} ← [X̂, V, X]DETwmk

true← [X̂, q(W), X ′]DETwmk

:D → A

3

D :

After

content

distributionA :

Identification and Dispute Resolution:

X ′, X̂, q}AKE

collates other evidence to identify CA :

{[W]HEhek∗
,VAIKC , pvk∗, hek∗, σ,AGR, [pvk∗]SIGSAIKC

,

SML, [[W]HEhek∗
, hek∗,AGR]SIGssk∗

, [PCR]SIGSAIKC
,

A→ C {watermark info?}
AKE:

C → A {watermark info}
AKE:

Figure 7.6: DAA Protocol – Identification and Dispute Resolution

(I) D detects a watermark from the found copy of content in order to identify the

client that owns the content.

1. When an illegal copy X̂ is found, D detects the presence of V in X̂:

{true, false} ← [X̂, V, X]DETwmk
.

181

7.3 Protocols based on TPM

If the detection algorithm returns true, then detection of V is successful and

D can blacklist the pseudonyms, that is, the Nv values used by the client.

It is not possible to blacklist the client since D has no knowledge of the real

identity of C.

(II) D proves to A that C illegally distributed copies of content, with evidence from

other sources.

2. Firstly, C cannot dispute the blacklisting by D if the reason is that D found an

illegally distributed content attributed to C. This is because only C possesses

the marked copy of content.

3. Secondly, to prove to A that C has illegally distributed content, D sends

the pseudonyms Nv and marked content to A. However, since no party can

determine the real identity of C except for C himself, due to the initial

setup phase using the DAA Join, other means of identifying the perpetrator,

such as disclosure of network activities by the Internet Service Provider (ISP)

are required.

Therefore, the dispute resolution phase is different from other protocols in that D

cannot prove to A the illegal act of C based on the information D has and the

assistance of the trusted third party (i.e. DAA Issuer). The DAA Issuer will not

be able to identify the client, since the DAA Issuer cannot determine the client.

This is due to the full anonymity and unlinkability provided by the DAA scheme, as

discussed earlier in the DAA Join phase.

In summary, the main idea of the protocol is:

• to deploy a trusted computing platform that consists of a TPM and IMSR,

which allows the client to generate the watermark, but at the same time forces

the client to generate a well-formed one based on the integrity measurement

of the IMSR.

• to give full privacy protection (anonymity and unlinkability) to the client based

on DAA, such that no parties will be able to determine the real identity of the

client and link any of the content requests.

182

7.3 Protocols based on TPM

However, the distributor might want to know the real identity of a client who illegally

redistributed copies of content. This is performed directly in other protocols by

trusted third parties (i.e. the CA or WCA) who have such information. In the next

section we present a protocol based on a trusted computing platform that allows the

distributor to determine the real identity of the client, while providing anonymity

and unlinkability.

7.3.3 A Protocol Based on a Privacy CA

This is a protocol that is based on a TPM and replaces the DAA Issuer with a Privacy

CA. As opposed to the DAA protocol, the Privacy CA is tasked with holding the

client’s identity and is fully trusted. We denote this protocol as the PCA protocol.

Fundamentals. As shown in Table 7.3, the PCA protocol involves five parties, with

the Privacy CA replacing the DAA Issuer. The CA, A, and Privacy CA are fully

trusted. The protocol provides traceability, framing resistance, non-repudiation of

redistribution and anonymity and unlinkability.

Environment. With similar reason to the DAA protocol, we assume in this protocol

that both C and D have ample resources. We also assume that public key and secure

communication support is in place. The Privacy CA is an offline TTP because it

is only involved in the initial setup phase and when there is a dispute between C

and D. The main building blocks are digital watermarking schemes, homomorphic

encryption schemes and digital signature schemes. In the following we describe the

three phases of the protocol.

Initial Setup. In this phase, C generates an AIK key pair (VAIKC ,SAIKC) and

requests the Privacy CA to certify VAIKC , the public half of the AIK. It is assumed

that the Privacy CA knows the endorsement key EK of the TPM in the client’s

computing platform. Figure 7.7 shows the protocol messages and the following

describes the protocol steps:

(I) C requests the Privacy CA to certify C’s AIK.

1. C chooses an identity IDC .

2. C signs VAIKC and the identity IDC as [VAIKC , IDC]SIGSAIKC
. This signature

183

7.3 Protocols based on TPM

Table 7.3: The Design Framework of the PCA Protocol
Fundamentals

Parties Involved C, D, A, CA, Privacy CA
Trust Assumptions CA, Privacy CA and A are fully trusted
Security Properties Traceability (TR), Framing resistance (FR)

Non-repudiation of redistribution (NR)
Anonymity and unlinkability (AU)

Environment

Comp. Resources Assume D and C have ample resources
Sec. comm. Support Required
Pub. Key Support Required
TTPs Trusted Computing Platforms [126],

offline Privacy CA
Building Blocks Digital watermarking scheme,

homomorphic encryption scheme
and digital signature scheme

Before

1

content

C → P CA {VAIKC , IDC , [VAIKC , IDC]SIGSAIKC
,:

distribution

Initial Setup:

P CA → C : {CertIDC
}
AKE

CRETPMC
,CertsskCA

(EK)}AKE

Figure 7.7: Privacy CA Protocol – Initial Setup

is then sent, together with the various certificates provided by the CA (e.g. the

manufacturer), to the Privacy CA. We denote these certificates as C’s TPM

credentials CRETPMC
. These credentials are used to convince the Privacy CA

that the TPM is genuine.

(II) Privacy CA provides C a certified AIK.

3. The Privacy CA verifies the signature and C’s TPM credentials.

4. The Privacy CA creates an identity certificate that normally contains the

VAIKC and encrypts the identity certificate with C’s TPM public endorse-

ment key EK. This is to ensure that only the genuine C’s TPM will be able

to decrypt and use the identity certificate. We denote the identity certificate

by CertIDC
. (In practical terms, the certificate can be encrypted using a sym-

metric encryption scheme, and the symmetric key and a hash value of VAIKC

are encrypted using the public half of EK).

184

7.3 Protocols based on TPM

5. Based on CertIDC
, C can generate other signing and encryption key pairs and

certifies these key pairs with the certified AIK. If C wishes different content

requests to be unlinkable, then C will request from the Privacy CA a distinct

certified AIK for each different content request.

Similar to the DAA Issuer, the Privacy CA’s only task is to register the client and

distributor (similar to the role of a normal CA), except that the Privacy CA knows

the client’s real identity. Since C can use the certified AIK key pair to generate and

certify many new randomly generated key pairs, if C does not mind his patterns of

content requests being linked by the distributor (i.e. unlinkability), then the initial

setup is a one-time process.

Content Watermarking and Distribution. The main goal of this phase is to

provide marked content to C, while at the same time ensuring that neither the

distributor nor the client will be discriminated due to tracing of content. The main

idea is to let C generate the watermark. The TPM and the IMSR in C’s computing

platform will then check that the generated watermark is well-formed. With the

certified pseudonym key pair (VAIKC ,SAIKC) provided by the Privacy CA, C can

generate a signing key pair and an encryption key pair to proceed with the protocol.

All the steps are identical to the Content Watermarking and Distribution phase

of the DAA protocol. The only difference is the replacement of the DAA Certificate

with the identity certificate CertIDC
provided by the Privacy CA. Therefore, we will

not describe the steps here. The protocol messages are shown in Figure 7.8.

2

Content

distribution

C → D :

Content Watermarking and Distribution:

D → C {[X ′′]HEhek∗
}
AKE

:

C ⇀↽ TPM SML, PCR:

{[W]HEhek∗
,VAIKC , pvk∗, hek∗,CertIDC

, [pvk∗]SIGSAIKC
,

AGR,SML, [[W]HEhek∗
, hek∗,AGR]SIGssk∗

, [PCR]SIGSAIKC
}AKE

Figure 7.8: Privacy CA Protocol – Content Watermarking and Distribution

Identification and Dispute Resolution. Just as in the protocol based on DAA

discussed in the previous section, the identification of a particular found content can

be done by detecting the watermark V . The difference from the previous protocol is

that D and A can request the Privacy CA to reveal the real identity of C. Figure 7.9

shows the protocol messages and in the following we present the communication

185

7.3 Protocols based on TPM

between D, A and the Privacy CA:

{true, false} ← [X̂, V, X]DETwmk

:D → A

3

D :

After

content

distribution

Identification and Dispute Resolution:

X ′, X̂, q}AKE

:A→ P CA {CertIDC
}
AKE

:P CA → A {C’s identity}
AKE

{[W]HEhek∗
,VAIKC , pvk∗, hek∗,CertIDC

, [pvk∗]SIGSAIKC
,

AGR,SML, [[W]HEhek∗
, hek∗,AGR]SIGssk∗

, [PCR]SIGSAIKC
,

true← [X̂, q(W), X ′]DETwmk
A :

A→ C {watermark info?}
AKE:

C → A {watermark info}
AKE:

Figure 7.9: Privacy CA Protocol – Identification and Dispute Resolution

(I) D detects a watermark from the found copy of content in order to identify the

client that owns the content.

1. When an illegal copy of content X̂ is found, D detects watermark V from this

copy. If the watermark is detected, D proceeds to communicate with A to

prove illegal distribution by C.

(II) D proves to A that C illegally distributed copies of content.

2. D sends [W]HEhek∗
, VAIKC , pvk∗, hek∗, CertIDC

, [pvk∗]SIGSAIKC
, AGR,SML,

[[W]HEhek∗
, hek∗,AGR]SIGssk∗

, [PCR]SIGSAIKC
, X ′, X̂ and q to A.

3. A then matches C’s identity certificate CertIDC
with the records stored by

the Privacy CA, which includes the public endorsement key EK of C’s TPM.

By knowing C’s identity, A ascertains whether C illegally redistributed con-

tent by checking the signature [[W]HEhek∗
, hek∗,AGR]SIGssk∗

and matching the

watermark W retrieved from the found copy to the original watermark.

In summary, the PCA protocol is beneficial for the distributor compared to the DAA

protocol, since it allows the distributor to determine the identity of a client with

the help of the Privacy CA. At the same time, although there is not full anonymity

and unlinkability, as long as the Privacy CA is fully trusted, a client can be assured

that he can communicate with the distributor anonymously. Hence, depending on

the application scenarios, if full anonymity is required then the DAA protocol can

186

7.4 Analysis

be used, while if a trusted third party that holds client’s information is required,

then the PCA protocol can be deployed.

7.4 Analysis

In this section we analyse the protocols with trusted hardware that we have just

discussed.

7.4.1 Security

Traceability. In the FCS protocol, traceability is provided through the watermark

V and watermark W . When an illegal copy of content is found, D traces the client

based on the detection of watermark V . A can be convinced that an illegal copy

belongs to C based on the detection of watermark W .

Similar to the FCS protocol, traceability in the PCA protocol is provided through

the watermark V and watermark W . Traceability in the DAA protocol is provided

through the watermark V . However, due to the property of full anonymity and

unlinkability, D can only trace to the pseudonyms instead of the client’s real identity.

Framing Resistance. The FCS protocol provides this property since D has no

knowledge of the watermark W , as W is produced and encrypted by the trusted

hardware TD. Also, the watermark W is embedded into content without D being

able to determine the watermark. Therefore, it is not possible for D to frame C.

For the case of embedding a watermark W retrieved from a found copy into a more

valuable content, A will be able to spot this discrepancy. This is done by checking

C’s signature on the agreement [pvk∗, hek∗,AGR]SIGssk∗
and the WCA’s signature

[[W]HEhek∗
, pvk∗, hek∗, [W]HEhekWCA

]SIGsskWCA
generated by the trusted hardware TD

in Step 2 and Step 4 in the Content Watermarking and Distribution phase.

Similar to the FCS protocol, in the DAA and the PCA protocols, framing of C by

D is not possible since D has no knowledge of the embedded watermark W in the

final copy possessed by C. This can be observed from the Content Watermarking

and Distribution phase, in which W is embedded into content in the encrypted

form. Also, transplanting the watermark W retrieved from an illegal copy to

187

7.4 Analysis

another more valuable copy to frame C can be spotted based on the signature

[[W]HEhek∗
, hek∗,AGR]SIGssk∗

, which links the agreement AGR with other informa-

tion, as provided in Step 5 of the Content Watermarking and Distribution phase

in Section 7.3.2.

Non-repudiation of Redistribution. This property is provided in the FCS pro-

tocol through C’s signature on the agreement [pvk∗, hek∗,AGR]SIGssk∗
and signa-

ture [[W]HEhek∗
, pvk∗, hek∗, [W]HEhekWCA

]SIGsskWCA
generated by the trusted hard-

ware TD. Based on these signatures, the watermark W retrieved from the found

copy and the description of the agreement AGR, A can confirm that C requested

and owned the copy of content found by D. This is performed by first matching

the retrieved watermark W with the original generated by TD and then verifying

the two signatures. After that, the identity of the client can be determined with the

help of the CA.

Similarly, the PCA protocol provides non-repudiation of redistribution through sig-

nature [[W]HEhek∗
, hek∗,AGR]SIGssk∗

generated by C and the detection of watermark

W . Since the watermark W is known only to C, A obtains the identity of C from

the Privacy CA and proceeds to request C to reveal the watermark.

As for the DAA protocol, since the main aim is to provide full anonymity and

unlinkability in such a way that no parties know the client’s identity except for

the client himself, non-repudiation of redistribution as provided in the previous

two protocols with the help of a trusted third party (e.g. the CA, Privacy CA) is

not possible. Therefore, to prove that C has illegally distributed content based on

the signature [[W]HEhek∗
, hek∗,AGR]SIGssk∗

and the retrieved watermark W , other

evidence to determine the identity of C is required, such as through collections of

network activities from the Internet Service Provider. Thus the DAA protocol is a

weak FaCT protocol.

Anonymity and Unlinkability. All three protocols provide this property. For

the FCS and the PCA protocol, this is provided through pseudonyms certified by

the CA or Privacy CA. In the FCS protocol, these pseudonyms are (pvk∗
C , ssk∗

C),

and (hek∗
C , hdk∗

C) and the randomly generated one-time key pairs (pvk∗, ssk∗) and

(hek∗, hdk∗). In the PCA protocol, these are (VAIKC ,SAIKC), and the signing and

encryption key pairs (pvk∗, ssk∗) and (hek∗, hdk∗). D cannot determine the identity

of C based solely on these pseudonyms and the randomly generated one-time keys,

188

7.4 Analysis

as there is no identity information attached to them. If C wishes that each content

request is unique and cannot be linked, then C generates unique (pvk∗
C , ssk∗

C) and

(hek∗
C , hdk∗

C) or (VAIKC ,SAIKC) and asks the CA or Privacy CA to certify these

pseudonyms. So D will not be able to link the many content requests to C. However,

the CA and Privacy CA must be fully trusted since these parties know the identity

of C.

This brings us to the full anonymity and unlinkability provided by the DAA protocol.

In this protocol, C interacts with D using AIKs, which act as pseudonyms (just as

in the PCA protocol). For unlinkability, C uses different AIK keys and Nv values to

communicate with D. The difference between this protocol and the previous ones is

that even though the DAA Issuer knows which TPMs with EKs possess which valid

DAA Certificates, the DAA Issuer cannot link these EKs with the corresponding

AIKs. This is because, in order to be able to make this link, the DAA Issuer would

require knowledge of the TPM’s DAA secret value, f . This is computationally

infeasible because of the way that a DAA Certificate is created, and since f never

leaves the TPM. Hence the DAA Issuer cannot determine the real identity of C

when presented with the AIKs.

Summary. Assuming that the underlying building blocks are secure, all three pro-

tocols provide traceability and framing resistance. The FCS and the PCA protocols

also provide non-repudiation of redistribution. The DAA protocol, however, does

not provide non-repudiation of redistribution directly. In addition, all protocols

provide the additional property of anonymity and unlinkability. The DAA protocol

further provides full anonymity and unlinkability, which means that not even the

trusted third party DAA Issuer is able to determine the identity of C.

We summarise the security analysis of these protocols in Table 7.4.

Table 7.4: Summary of the Security Analysis
Protocols TR FR NR AU Conditions
FCS X X X X Abstract trusted hardware.
DAA X X × X

1 Security of TPM and DAA.
A weak FaCT protocol.

P CA X X X X Security of TPM.
1 full anonymity and unlinkability

189

7.4 Analysis

7.4.2 Efficiency

We now examine the performance of the three protocols, the results of which are

summarised in Table 7.5. We assume that all three protocols deploy the homomor-

phic encryption scheme of Paillier [99]. In addition, since the DAA and the PCA

protocols have similar processes with regards to their bandwidth, computation and

storage requirements, we will treat them as one entity.

Bandwidth. All three protocols produce the encrypted marked content based on a

homomorphic encryption scheme with modulus m. Given that there are n elements

in the watermark and content, the size of the encrypted marked content transmitted

between D and C is n|m|.

Trusted Third Parties. All three protocols require special trusted hardware for

producing and authenticating the watermark. In the FCS protocol, this trusted

hardware resides in D’s computing platform, while in the DAA/PCA protocols, the

trusted hardware resides in C’s computing platform. As there is no explanation on

how to realise the trusted hardware, we reason that the implementation cost for the

trusted hardware in the FCS protocol is higher since it is assumed that the trusted

hardware performs watermarking in the encrypted domain and digital signatures.

In contrast, in the DAA/PCA protocols, these computations are performed by C’s

computing platform, while the TPM only measures and ensures the integrity of these

processes. Also, since these protocols provide anonymity and unlinkability, the CA,

DAA Issuer or Privacy CA, in addition to the common responsibility of public key

support, needs to provide pseudonyms (anonymous keys) for C.

Computation. Similar to the LYTC protocol presented in Section 5.2, in all three

protocols, D needs to encrypt n elements of content and multiplies them with the

n encrypted elements of the watermark. Therefore, D performs n modular expo-

nentiations (nE) and n modular multiplication (nM). D also adds a watermark V

into the content. This amounts to n additions (nA). As for C, in the FCS protocol,

only n modular exponentiations (nE) to decrypt the encrypted marked content is

required, while in the DAA/PCA protocols, an extra n modular exponentiations

(nE) is required during the encryption of the watermark W .

Storage. In all three protocols, for producing the encrypted marked content, D

needs to store the homomorphic encryption key of C. This has size |m| based on the

190

7.5 Summary

modulus m of the underlying homomorphic encryption scheme. D also stores the

encrypted watermark [W]HEhek∗
and the watermark V . The encrypted watermark

has size n|m|, since there are n encrypted elements and each of them has |m| bits.

The watermark V has size n|Z|, where Z denotes the highest possible value for each

element. C, on the other hand, needs to store the public and private encryption keys

for the encryption and decryption of the marked content. This amounts to 2|m| bits

of storage. The DAA/PCA protocols further require the storage of the watermark

W , since this is generated and only known by C. This amounts to n|Z| bits.

Summary. From the above analysis, we observe that all three protocols have similar

efficiency, except that C in the FCS protocol requires less computation and storage.

However, the implementation cost of the trusted hardware in the FCS protocol is

higher.

Table 7.5: Efficiency Comparisons between Protocols with Trusted Hardware

Pro. Bandwidth TTP Computation1 Storage2

FCS [X ′′]HEhek∗
= n|m| D’s TH3 C: nE C: 2|m|

D: n(E + M + A) D: (n + 1)|m| + n|Z|
DAA/ [X ′′]HEhek∗

= n|m| C’s TH C: 2nE C: 2|m| + n|Z|
PCA D: n(E + M + A) D: (n + 1)|m| + n|Z|
1

E=O(k3), M=O(k2), A=O(k)
2 |Z| < |m|
3 Higher implementation cost compared to the DAA and PCA protocols

7.5 Summary

In this chapter we discussed three FaCT protocols that deploy trusted hardware.

All three protocols provide anonymity and unlinkability as an additional property.

The FCS protocol assumes the existence of trusted hardware that resides in D’s

computing platform. The trusted hardware generates and encrypts the watermark

W . The proposal does not explain how such trusted hardware can be realised.

Two other protocols, which we proposed, adopt the TPM hardware module. The

first protocol, which was published in [86], uses DAA to provide full anonymity and

unlinkability to the client, which means that no parties (not even the third party

known as the DAA Issuer) knows the real identity of a client. Since this might not

be desirable for D, an alternative approach, based on a trusted third party known

as a Privacy CA, can be used. This is demonstrated in our second protocol.

191

Chapter 8

FaCT Protocols with Payment

and Fair Exchange

Contents

8.1 Overview . 193

8.2 Adding Payment and Fair Exchange 193

8.2.1 Protocols without Trusted Third Parties 195

8.2.2 Protocols with Online Trusted Third Parties 197

8.2.3 Protocols with Offline Trusted Third Parties 198

8.2.4 Protocols with Trusted Hardware 198

8.2.5 Protocols with Anonymity and Unlinkability 199

8.3 A Protocol with Payment and Fair Exchange 201

8.3.1 Security . 207

8.3.2 Efficiency . 209

8.4 Summary . 210

In this chapter we investigate FaCT protocols with payment and fair exchange. The

addition of payment, which in turns motivates the requirement of fair exchange, has

not been discussed before in the context of fair content tracing. We discuss why this

is an important issue and examine how payment and fair exchange can be added into

the main categories discussed in previous chapters. We further provide an example

protocol.

192

8.1 Overview

8.1 Overview

Many existing FaCT protocols assume that the content involved is being exchanged

for monetary payment, without demonstrating how payment can be included. Such

addition of payment was briefly discussed in Section 3.5.6. While the addition seems

straightforward, except for the requirement of a payment agent (see Figure 3.11),

it brings out the issue of how content can be traded fairly. This means that D is

assured of receiving the correct payment while C receives correct content. This issue

is relevant since D and C do not necessarily trust one another, which is one of the

main assumptions behind the design of FaCT protocols.

Therefore, the main goal of this chapter is to investigate the addition of payment

and how C and D can trade content fairly. Fair trading of this type is known as

fair exchange [5, 92]. We discuss the required changes to the four categories of

FaCT protocols when payment and fair exchange are added. We also construct a

fair exchange FaCT protocol with online trusted third parties as an example.

8.2 Adding Payment and Fair Exchange

In order for a FaCT protocol to include payment, parties known as payment agents

must be involved. While to ensure that C and D trade fairly, we examine and use

the existing fair exchange protocols.

Payment Agents PA. As discussed in Section 3.5.6, a client C and a distributor

D enter into contractual relationships with their respective banks and agree on a

payment mechanism. Thus, when C buys content from D and provides D with the

payment information based on the agreed mechanism, D forwards this information to

his bank (or a payment gateway such as paypal [101], VISA [131] or Mastercard [93])

to obtain the correct payment. We denote the bank or the payment gateway as the

payment agent PA.

In a FaCT protocol, this means that when C buys content from D during the

Content Watermarking and Distribution phase, D needs to contact the PA to

verify the payment. As a result, both C and D will be provided with information

from the PA showing that payment has been processed.

193

8.2 Adding Payment and Fair Exchange

Fair Exchange (FE) Protocols. These are protocols commonly applied to elec-

tronic payment and certified mail exchange for fair trading between two parties. As

observed in [5], a straightforward method of ensuring fair exchange is to deploy a

trusted third party (i.e. the arbiter A). For example, D gives the marked content

to A and C provides his payment information to A. After A is satisfied that both

the received objects are correct, he forwards the marked content to C and process

the payment for D. By exchanging objects through A it is ensured that no parties

are discriminated. The main drawback of this approach is that A is always involved

in the process, even when C and D are honest. Nevertheless, it has been proved by

Even and Yacobi in [45] that fair exchange is impossible without any involvement

of a trusted third party.

Thus the main goal of a FE protocol is to reduce the reliance on this trusted third

party. For example, Franklin and Reiter [49] proposed a FE protocol with a semi-

trusted third party, in which this third party may misbehave on its own but will not

collude with other parties. Asokan et al. [5] proposed an optimistic FE protocol,

where optimistic means that a trusted third party is involved only when there is

a dispute between the two communicating parties, but not if the protocol is run

honestly.

More recently, Ray et al. [116] and, Zhang and Markantonakis [140] proposed fair

e-payment protocols that also protect client privacy. The proposal in [116] is an

optimistic FE protocol following Asokan et al.’s approach. Protection of client pri-

vacy is provided based on the anonymous cash system of Chaum [20]. The proposal

in [140] focuses on purchase of physical goods. Fair payment is assured by C’s and

D’s banks, who have the capability of releasing payment to D if C refuses to do

so after retrieving the goods from a storage facility. Similarly, the protocol is de-

signed in such a way that D can only receive the payment after C retrieves the

goods. Protection of client privacy is provided based on anonymous credit card

protocols [89]. Pagnia et al. [98], on the other hand, proposed a modular approach

that summarised various frameworks of fair exchange, while Markowitch et al. [92]

investigated various properties of fairness.

Following the definition provided by Asokan et al. [5], fair exchange can further

be divided into strong fairness and weak fairness. A FE protocol achieves strong

fairness for a party I1 if I1 never releases the object he promised to unless the

194

8.2 Adding Payment and Fair Exchange

object he required has been received. On the other hand, a FE protocol achieves

weak fairness for a party I2 if whenever I2 releases the object he promised to but

never receives the object required, then there exists a proof that I2 can provide to A

that either forces the release of the object or leads to the recovery of any losses. We

note that these are simplified versions of the original definitions, which are sufficient

to cover the required scope of fair exchange in the context of FaCT protocols.

We choose to design FaCT protocols with payment and fair exchange such that

strong fairness is provided to D and weak fairness is provided to C. The design

also follows that of Asokan et al.’s optimistic protocol, in which A is involved only

if there is a dispute between C and D. Such a choice reflects the actual scenario of

buying and selling of goods using the Internet. For example, it is always the case

that the buyer provides the payment information to the seller, and the seller checks

the validity of this information with the PA, before the goods are sent to the buyer.

If there is any discrepancy, such as the goods received by the buyer are faulty, then

it is possible for the buyer to contact the seller (or a consumer advice organisation)

to resolve the issue.

In the following sections we examine the required changes in each of the main cat-

egories when payment and fair exchange are added. We assume that both C and

D have entered into contractual relationships with their respective banks and have

previously agreed on a payment mechanism.

8.2.1 Protocols without Trusted Third Parties

In this category, the addition of payment requires the involvement of a PA that must

be online during the content distribution phase. This is so that D can verify the

payment, while C receives a receipt noting that a payment had been made to D.

Following from the general construction described in Section 3.5.6, we illustrate

the protocol messages in Figure 8.1. As can be observed, C includes the payment

information PAY in the message sent to D. Upon receiving the message, D sends

PAY to PA so that PA can verify the validity of the payment. If this is the case, and

D receives the payment, then D proceeds to generate marked content and sends the

resulting content to C. The PA, after paying D, also produces a payment receipt

and sends it to C. This receipt serves as evidence that C paid for content and is

195

8.2 Adding Payment and Fair Exchange

important to ensure weak fairness for C, which we next discuss.

2

content

distribution

Content Watermarking and Distribution:

{receipt, info}
AKEPA → C :

{PAY , info}
AKED → PA :

{Paid, info}
AKEPA → D :

C → D {PAY, info, f(W), SIG}
AKE:

D → C

{
info, f(X̃)

}

AKE
:

Figure 8.1: Adding PA and FE: Protocols without TTPs

D is assured of strong fairness since he verifies PAY before sending C the content.

To provide weak fairness for C, a new phase is required. This is the Dispute

Resolution for Fair Exchange phase. The general construction was previously

shown in Figure 3.12. We note that this phase is identical across all categories of

FaCT protocols. In the following we demonstrate an example construction with

payment and fair exchange based on the Semi-Fair protocol, which was discussed in

Section 4.4.

Adding Payment and Fair Exchange to the Semi-Fair Protocol. In order

to add payment and provide fair exchange, new protocol messages are added to the

Content Watermarking and Distribution phase. As shown in Figure 8.2, in the

first message sent from C to D, the payment information PAY and the identity of

the PA IDPA are included.

2

[W]HEhekC
, [PAY , IDPA]SIGsskC

, [[W]HEhekC
,AGR]SIGsskC

}AKE

D → C

{

[X ′′]HEhekC
, [[X ′′]HEhekC

]SIGsskD

}

AKE

:

Content

distribution

C → D {PAY, IDPA, hekC , pvkC , [hekC , pvkC , IDC]SIGsskKC
,AGR,:

Content Watermarking and Distribution:

{

Receipt , [Receipt]SIGsskPA

}

AKEPA → C :

{PAY , [PAY , IDPA]SIGsskC
,D → PA :

{

Paid , [Paid]SIGsskPA

}

AKE

PA → D :

hekC , pvkC , [hekC , pvkC , IDC]SIGsskKC
}AKE

Figure 8.2: Adding PA and FE: The Semi-Fair Protocol

Instead of producing the marked content as in the original protocol, upon receiving

C’s message, D sends PAY to PA so that PA can verify the validity of the payment

information and pay the exact amount to D. Only after D receives the payment

196

8.2 Adding Payment and Fair Exchange

does D generate and send the marked content to C. Thus D is provided with strong

fairness. Also, when the payment is made to D, the PA sends C a receipt. In

practical terms, this can be a bank statement stating that C has paid D a certain

amount of money.

When there is a dispute in which C claims that he did not receive the said content

or that the content is not correct, and C is not able to resolve the dispute with D,

then C initiates the Dispute Resolution for Fair Exchange phase (Figure 8.3).

4

D → A :

C → A :

Dispute Resolution for Fair Exchange:

{

[X ′′]HEhekC

}

AKE

A → D {resend}
AKE

:

A → C :
{

[X ′′]HEhekC

}

AKE

{

Receipt , [Receipt]SIGsskPA

}

AKE

Figure 8.3: Dispute Resolution for FE: The Semi-Fair Protocol

C can request new content by sending the receipt as proof to A. If the receipt is

valid, A obtains a new copy from D and forwards this copy to C. It is possible that

C has already received the correct content but uses the receipt to obtain a new copy.

We remark that we do not see this as a threat since C can produce as many copies

of content as he likes with the content already owns. There is no motivation for C

to want to go through the process of requesting new content by contacting A.

8.2.2 Protocols with Online Trusted Third Parties

Similarly to the previous category, adding payment requires the PA to be online

during content distribution. Since in the original design a WCA must be online to

generate client watermarks, the PA and the WCA may be combined as one entity

(although in logical terms they play different roles). If this is the case then adding

payment does not require additional communication between D and the trusted

third party, but an extra message where C receives a payment receipt from the PA.

This is shown in the general construction in Figure 8.4. Provision of fair exchange

is also based on the payment receipt and is identical to Figure 8.3. An example

protocol with payment and fair exchange is provided in Section 8.3.

197

8.2 Adding Payment and Fair Exchange

D → PA1 {PAY , info,watermark-request info}
AKE:

PA → D {Paid, info, f(W), SIG}
AKE:

2

content

distribution

Content Watermarking and Distribution:

C → D {PAY, info, SIG}
AKE:

D → C

{
info, f(X̃)

}

AKE

:

{receipt, info}
AKEPA → C :

1 PA also plays the role of the WCA, or vice versa

Figure 8.4: Adding PA and FE: Protocols with Online TTPs

8.2.3 Protocols with Offline Trusted Third Parties

The addition of payment and provision of fair exchange in this category is identical

to that of protocols without trusted third parties (see Figures 8.1 and 8.3). This

is because only the Content Watermarking and Distribution phase needs to be

modified to include payment, and both these categories have an identical content

distribution phase, except for the generation of client watermarks, which does not

affect the addition of payment and fair exchange.

8.2.4 Protocols with Trusted Hardware

The main design for protocols in this category is to use trusted hardware in replace-

ment of the online (or offline) trusted third party that is responsible for generating

client watermarks. Also, if clients generate the watermarks, then the trusted hard-

ware can be used to validate these watermarks. Thus by using trusted hardware,

the issue of a central trusted third party can be alleviated through embedding their

functionality into the clients’ computing platforms. We have seen three protocols of

this type in Chapter 7.

However, in order to add payment, the PA must be involved in the content distribu-

tion phase, as it seems impossible to have the entire payment mechanism embedded

in trusted hardware or processed by the trusted hardware. Hence, the PA becomes

a central point of communication during content distribution, which may be unde-

sirable in a distributed computing environment.

In Figure 8.5 we show the protocol messages between D, C and the PA in the

Content Watermarking and Distribution phase. As can be observed, these are

198

8.2 Adding Payment and Fair Exchange

similar to other categories of protocols since the addition of payment requires the

same communication flows between D, C and the PA. We will examine the adding

of payment and fair exchange in the DAA protocol in the next section, where we

also discuss the effects of adding them to FaCT protocols with anonymity and un-

linkability.

2

D → C :

content

distribution

C → D :

Content Watermarking and Distribution:

C → D : {PAY, info, f(W), SIG}
AKE

OR

{PAY, info, SIG}
AKE

{
info, f(X̃)

}

AKE

{receipt, info}
AKEPA → C :

{PAY , info}
AKED → PA :

{Paid, info}
AKEPA → D :

(TH in C)

(TH in D)

Figure 8.5: Adding PA and FE: Protocols with TH

8.2.5 Protocols with Anonymity and Unlinkability

There are two scenarios for including payment in a FaCT protocol that additionally

provides anonymity and unlinkability:

• The PA is allowed to know the identity of C. This is similar to the CA in

the original design of FaCT protocols, such as the LYTC protocol discussed

in Section 5.2. If this is the case then adding payment and providing fair

exchange can be done in a similar way to the other categories, except that

the payment details contained in PAY are encrypted. This is required since D

should not be able to determine C based on C’s account information contained

in PAY. In other words, C encrypts the payment information using PA’s public

encryption key so that only the PA can decrypt it and processes the payment.

• The PA is not allowed to know the identity of C. If this is the case then

anonymous payment mechanisms must be used. An example of using such

a mechanism for fair exchange is provided in [116], where digital coins are

used. Before purchasing content from D, C requests digital coins from the

PA. Due to the underlying digital cash mechanism, C obtains the digital coins

without the PA being able to link these coins to C (see [116]). This is akin to

199

8.2 Adding Payment and Fair Exchange

withdrawing cash from an ATM machine. Then C uses these coins as PAY to

buy content from D.

However, since the PA has no way of determining C, it is not possible for

the PA to provide a payment receipt to C. In such a case C relies on D to

provide a receipt, or the PA stores a receipt linked to the digital coins and

other information, such as a signature generated using C’s one-time signing

key, received from D. Thus ensuring weak fairness for C in this scenario

depends on D willingly providing a payment receipt to C. We suggest that D

would normally provide such a receipt since C can choose to purchase content

from other distributors if D refuses to do so. If in the worst case scenario C

does not receive content and the receipt after paying, then C needs to show

to A other forms of evidence, and A contacts PA to verify whether such a

transaction was performed.

In the following we provide an example construction of the second scenario using

the DAA protocol discussed in Section 7.3.2.

Adding Payment and Fair Exchange to the DAA Protocol. As can be

observed from Figure 8.6, the first message sent by C to D contains payment in-

formation, the encrypted watermarks and the information on the trusted hardware.

As opposed to the original DAA protocol, where upon verifying the validity of this

message D produces the marked content and sends it to C, first D passes PAY to

the PA for validation. Only after the PA verifies PAY does D generate the marked

content. After that, D sends the encrypted marked content, together with a pay-

ment receipt, to C. This payment receipt is a signature [[IDPA,AGR]SIGssk∗
]SIGsskD

generated by D. In contrast to other protocols, in this scenario D issues the pay-

ment receipt instead of the PA. In addition, the PA stores in his database all the

objects, such as C’s AIKs and signature, received from D.

When there is a dispute concerning receipt of the correct content, C sends A the

payment receipt and information that allows A to authenticate the anonymous iden-

tity of C. This normally contains C’s TPM credentials. Upon verifying the validity

of the information provided, A asks for a new copy of content from D and forwards

this new copy to C. The protocol messages are shown in Figure 8.7.

200

8.3 A Protocol with Payment and Fair Exchange

2

Content

distribution

C → D
{[W]HEhek∗

,VAIKC , pvk∗, hek∗, σ,AGR, [pvk∗]SIGSAIKC
,:

Content Watermarking and Distribution:

SML, [[W]HEhek∗
, hek∗,AGR]SIGssk∗

, [PCR]SIGSAIKC
,

D → C

{

[X ′′]HEhek∗
, [[IDPA,AGR]SIGssk∗

]SIGsskD

}

AKE
:

C ⇀↽ TPM SML, PCR:

{PAY ,AGR, [IDPA,AGR]SIGssk∗
, pvk∗,VAIKC ,D → PA :

{

Paid , [Paid]SIGsskPA

}

AKE

PA → D :

[pvk∗]SIGSAIKC
, σ, SML, [PCR]SIGSAIKC

}AKE

PAY , IDPA, [IDPA,AGR]SIGssk∗
}AKE

Figure 8.6: Adding PA and FE: The DAA Protocol

D → A :

C → A :

Dispute Resolution for Fair Exchange:

{[X ′′]HEhek∗
}
AKE

A → D {resend}
AKE

:

A → C : {[X ′′]HEhek∗
}
AKE

4

{AGR, [IDPA,AGR]SIGssk∗
, [[IDPA,AGR]SIGssk∗

]SIGsskD
,

pvk∗,VAIKC , [pvk∗]SIGSAIKC
, σ, SML, [PCR]SIGSAIKC

}AKE

Figure 8.7: Dispute Resolution for FE: The DAA Protocol

As mentioned earlier, if during the content distribution phase D fails to provide

content and a payment receipt to C, then C sends to A:

C → A : {AGR, [IDPA,AGR]SIGssk∗
, pvk∗,VAIKC ,

[pvk∗]SIGSAIKC
, σ, SML, [PCR]SIGSAIKC

}AKE
,

without a payment receipt. This message is validated by A based on the information

provided by the PA to check whether C has paid for the said content as claimed. If

this is the case then A asks D for a copy of content.

In the next section we present a FaCT protocol that includes payment and provides

fair exchange.

8.3 A Protocol with Payment and Fair Exchange

We provide an example FaCT protocol that includes payment and provides fair

exchange. We denote this protocol as the FE protocol. In this protocol, C does not

receive the content until the payment is transferred to D. On the other hand, if after

201

8.3 A Protocol with Payment and Fair Exchange

making the payment the content is not received, or does not fit the description, then

C requests via A that D re-issues the content.

Fundamentals. Table 8.1 shows the design framework of the FE protocol. In

brief, the protocol involves C, D, a CA, a PA and A. The CA, PA and A are

fully trusted. The PA also acts as a WCA to generate client watermarks. The FE

protocol provides traceability, framing resistance, non-repudiation of redistribution,

anonymity and unlinkability with respects to D, strong fairness for D and weak

fairness for C.

Environment. This is a protocol with an online trusted third party. Its environ-

ment is similar to the LYTC protocol, on which it is based. It provides a Dispute

Resolution for Fair Exchange phase to solve the fair exchange issue.

Table 8.1: The Design Framework of the FE Protocol
Fundamentals

Parties Involved C, D, A, CA, PA
Trust Assumptions CA, PA and A are fully trusted
Security Properties Traceability (TR), Framing resistance (FR),

Non-repudiation of redistribution (NR),
Anonymity and unlinkability (AU),
Fair exchange (FE)

Environment

Comp. Resources Assume D and C have ample resources
Sec. comm. Support Required
Pub. Key Support Required
TTPs Online TTP (PA)
Building Blocks Digital watermarking scheme,

homomorphic encryption scheme
and digital signature scheme

Initial Setup. The main purpose of this phase is for C and D to register with

the CA. It creates a pseudonym for C, so that C can later purchase content from

D anonymously. It is identical to the Initial Setup phase of the LYTC proto-

col presented in Section 5.2. This means that after the completion of the initial

setup, C possesses long term key pairs (hekC , hdkC) and (pvkC , sskC), and a sig-

nature [hekC , pvkC , IDC]SIGsskCA
generated by the CA. In addition, C possesses a

pseudonym containing anonymous key pairs (hek∗
C , hdk∗

C) and (pvk∗
C , ssk∗

C), and an

anonymous certificate CertsskCA
(pvk∗

C , hek∗
C).

202

8.3 A Protocol with Payment and Fair Exchange

Content Watermarking and Distribution. The main purpose of this phase is

for C to receive correct content and D to receive correct payment. It involves the

agreement between C and D on the price and description of the content that C

wishes to purchase. In addition, C and D also agree on a PA for payment purposes.

We assume that the payment token PAY contains sufficient details for D to receive

payment. Alternatively, PAY could denote a payment sub-protocol between C, D

and the PA. Ways in which this can be achieved are surveyed in [119]. Figure 8.8

shows the protocol messages and the communication between the three parties is

described below:

2

D → PA :

PA → D {Paid , [Paid , [[W]HEhek∗
]PEpekD

,AGR, [W]PEpekPA
]SIGsskPA

,:

Content

distribution

C → D {pvk∗, hek∗,CertsskCA
(pvk∗

C , hek∗

C),Certssk∗

C
(pvk∗, hek∗),:

Content Watermarking and Distribution:

PAY , IDPA,AGR, [PAY , IDPA,AGR]SIGssk∗
}AKE

[[W]HEhek∗
]PEpekD

, [W]PEpekPA
}AKE

D → C {[X ′′]HEhek∗
}
AKE

:

PA → C
{

[PAY ,AGR]SIGsskPA

}

AKE

:

{pvk∗, hek∗,CertsskCA
(pvk∗

C , hek∗

C),Certssk∗

C
(pvk∗, hek∗),

PAY ,AGR, [PAY , IDPA,AGR]SIGssk∗
}AKE

Figure 8.8: FE Protocol – Content Watermarking and Distribution

(I) C requests content and approves a content agreement with D.

1. C selects a PA and checks AGR for later purchasing content from D.

2. C randomly generates a one-time encryption key pair (hek∗, hdk∗) and signa-

ture key pair (pvk∗, ssk∗). The public keys are signed to produce an anonymous

certificate Certssk∗

C
(pvk∗, hek∗).

3. C prepares payment PAY and generates a signature on (PAY, IDPA, AGR).

The signature [PAY , IDPA,AGR]SIGssk∗
, produced using the one-time signing

key ssk∗, is sent together with PAY, IDPA and AGR to D. The one-time

public keys pvk∗ and hek∗, the new certificate Certssk∗

C
(pvk∗, hek∗) and the

anonymous certificate CertsskCA
(pvk∗

C , hek∗
C) generated by the CA are also

sent to D.

(II) D sends PAY and requests a client watermark from the PA.

203

8.3 A Protocol with Payment and Fair Exchange

4. D verifies the signature, and sends [PAY , IDPA,AGR]SIGssk∗
, PAY and AGR

to the PA. He also sends C’s anonymous certificate CertsskCA
(pvk∗

C , hek∗
C),

hek∗ and pvk∗ to PA so that PA can verify the signature generated by C.

(III) The PA sends to D an encrypted client watermark. D also receives payment

while C receives a payment receipt.

5. The PA verifies the certificate using the CA’s public verification key pvkCA.

Upon successful verification, the PA verifies the signature using C’s public

verification key ssk∗. Next, the PA checks PAY , AGR and deposits PAY to

D’s account.

6. The PA chooses a unique client watermark W . Using C’s encryption key,

hek∗, PA encrypts W with a homomorphic encryption scheme, resulting in

[W]HEhek∗
. This will later be used by D to form the encrypted and water-

marked content. The encrypted watermark is further encrypted under D’s en-

cryption key, resulting in [[W]HEhek∗
]PEpekD

. Watermark W is also encrypted

under the PA’s encryption key as [W]PEpekPA
. Both these encryptions are to

ensure confidentiality. This will be used, if necessary, during dispute resolu-

tion.

7. Next the PA generates a signature:

[Paid , [[W]HEhek∗
]PEpekD

,AGR, [W]PEpekPA
]SIGsskPA

,

where Paid denotes the payment transfer statement. The PA sends this sig-

nature, Paid , together with [[W]HEhek∗
]PEpekD

and [W]PEpekPA
to D. The PA

also generates a signature

[PAY ,AGR]SIGsskPA

and sends this signature to C. For the PA, sending [W]PEpekPA
to D means

that the PA does not need to store W , while [PAY ,AGR]SIGsskPA
serves as a

payment receipt for C.

(IV) D produces a marked copy of the requested content and sends it to C.

204

8.3 A Protocol with Payment and Fair Exchange

8. D verifies the PA’s signature, checks Paid and decrypts [[W]HEhek∗
]PEpekD

to

retrieve the encrypted watermark [W]HEhek∗
.

9. Next, D generates a watermark V and embeds V into the content X which C

wishes to purchase, resulting in:

X ′ ← [X, V]EMBwmkV
.

With V embedded, D can check any content found at a later stage in order to

verify D’s ownership and confirm that the content belongs to C, by matching

V to D’s database.

10. D then uses the homomorphic encryption scheme to generate the encrypted

marked content, in the same way that it is generated in the LYTC protocol

(Section 5.2):

[x′
i]HEhek∗

· [wi]HEhek∗

= [x′
i ◦ wi]HEhek∗

= [x
′′

i]HEhek∗



 1 ≤ i ≤ n,

where n is the number of elements in the watermark and content, and where

◦ represents either modular addition, modular multiplication or bit-wise XOR

depending on the underlying homomorphic encryption used. The resulting

encrypted marked content is denoted as [X ′′]HEhek∗
. This encrypted marked

content is sent to C.

11. C verifies the payment receipt [PAY ,AGR]SIGsskPA
and decrypts the encrypted

marked content [X ′′]HEhek∗
to get the watermarked content X ′′. C further

checks if the content X ′′ is correct. If it is, then the purchase is completed. If

not, C proceeds to the fair exchange phase.

Identification and Dispute Resolution. This protocol is executed if D dis-

covers a copy of its sold contents and suspects C of having illegally distributed it.

It allows for D to identify C responsible for redistributing the bought content and

further to obtain a proof of this. The following explains how the identification and

arbitration is carried out between D, A, the PA and the CA. Note that D does not

need the cooperation of C to obtain a proof of the fact that C illegally distributed

copies of content. Figure 8.9 shows the protocol messages.

(I) D detects a watermark from the found copy of content in order to identify the

client that owns the content.

205

8.3 A Protocol with Payment and Fair Exchange

{true, false} ← [X̂, V, X]DETwmk

:D → A

3

D :

{hek∗, pvk∗,Certssk∗

C
(pvk∗, hek∗),CertsskCA

(pvk∗

C , hek∗

C),

After

content

distribution
A :

Identification and Dispute Resolution:

X ′, X̂,PAY , IDPA,AGR, [PAY , IDPA,AGR]SIGssk∗
}AKE

true← [X̂,W,X ′]DETwmk

A→ PA {watermark info?}
AKE:

PA → A {watermark info}
AKE:

Figure 8.9: FE Protocol – Identification and Dispute Resolution

1. D initiates by checking if found content X̂ is similar to content in D’s database.

2. If so, D detects whether V is embedded in the content. If it is, D sends

the following information to A to prove D’s claim: the marked content X ′,

the found copy X̂, the one-time public key hek∗, pvk∗, the certificate of them

Certsskssk∗
C

(pvk∗, hek∗), the pseudonym CertsskCA
(pvk∗

C , hek∗
C) of C, the agree-

ment AGR, C’s signature [PAY , IDPA,AGR]SIGssk∗
and the payment PAY .

(II) D proves to A that C illegally distributed copies of content.

3. A verifies the signature on the one-time key and the pseudonym to confirm that

C’s keys are valid, and uses pvk∗ to verify C’s payment offer. A also verifies

C’s signature on the purchase agreement. If the verifications are correct, A

requests the client’s watermark W by sending its encrypted version [W]PEpekPA

to the PA.

4. The PA decrypts [W]PEpekPA
and sends W back to A.

5. A detects whether the watermark W is embedded in the found content X̂. If

W is detected, A decides that C is guilty and asks the CA to reveal C’s real

identity by sending C’s pseudonym CertsskCA
(pvk∗

C , hek∗
C) to the CA.

6. The CA verifies the pseudonym and reveals the real identity of C to A.

Dispute Resolution for Fair Exchange. A content dispute occurs when the

content received by C does not match the description, or if C does not receive

anything at all, and C is unable to resolve the matter directly with D. Figure 8.10

shows the interactions between the parties involved in order to resolve the dispute.

206

8.3 A Protocol with Payment and Fair Exchange

D → A :

C → A :

Dispute Resolution for Fair Exchange:

{[X ′′]HEhek∗
}
AKE

A → D {resend}
AKE

:

A → C : {[X ′′]HEhek∗
}
AKE

4

{hek∗, pvk∗,Certssk∗

C
(pvk∗, hek∗),CertsskCA

(pvk∗

C , hek∗

C),PAY ,

IDPA,AGR, [PAY , IDPA,AGR]SIGssk∗
, [PAY ,AGR]SIGsskPA

}AKE

Figure 8.10: FE Protocol – Dispute Resolution for Fair Exchange

Here C sends a request to A for D to resend the content, as described below:

1. C initiates by sending to A the objects needed by A to verify C’s identity

and C’s claim. These include C’s one-time public keys hek∗, pvk∗, the anony-

mous certificates Certsskssk∗
C

(pvk∗, hek∗) and CertsskCA
(pvk∗

C , hek∗
C), the pur-

chase agreement AGR, the signature [PAY , IDPA,AGR]SIGssk∗
and C’s pay-

ment receipt [PAY ,AGR]SIGsskPA
.

2. A checks the certificates and verifies the signature. If they are valid, A sends

a resend request to D. The payment receipt allows A to ascertain that D has

agreed to sell the content and that payment has been made to D.

3. D prepares new encrypted marked content and sends this to A, which is then

forwarded to C.

4. C decrypts the newly encrypted marked content [X ′′]HEhek∗
to get content X ′′,

and checks X ′′.

8.3.1 Security

The security of the protocol with fair exchange is based on the security of the

underlying building blocks and the fair exchange protocol in [98]. In the following

we discuss how the security requirements stated in Table 8.1 are fulfilled.

Traceability. Traceability of content is preserved since D can trace content through

the watermark V , which is embedded in the content in the Content Watermarking

and Distribution phase.

207

8.3 A Protocol with Payment and Fair Exchange

Framing Resistance. Framing of C by D is not possible since both C and D

have no knowledge of the resultant watermark embedded in the final copy possessed

by C. This can be observed from the execution of the Content Watermarking

and Distribution phase, in which C’s watermark is generated and encrypted by

the PA, and later embedded in the encrypted domain into the content by D using

homomorphic encryption.

Non-repudiation of Redistribution. An undeniable proof of redistribution is

in D’s possession, namely C’s signature [PAY , IDPA,AGR]SIGssk∗
binding C to the

purchase agreement AGR. This information can be presented to A, and C can-

not deny distributing bought content illegally when C’s signature and AGR, which

contains the description of the content, have been verified, and furthermore, C’s

watermark W is found embedded in the distributed content. The real identity of C

can then be identified with the assistance of the CA.

Anonymity and unlinkability. The pseudonym utilised by C during a purchase

consists of the one-time key pairs (hek∗, hdk∗) and (pvk∗, ssk∗), the signature [hek∗,

pvk∗]SIGssk∗
C

and the pseudonym CertsskCA
(pvk∗

C , hek∗
C). Anonymity of C is pre-

served with respect to D since there is no way for D to link the one-time key pairs

to C’s real identity. Unlinkability of C can be preserved by using unique pseudonym

and one-time key pairs each time C buys content from D.

Fair Exchange. In the case where the protocol completes successfully after the

execution of the Content Watermarking and Distribution phase, from C’s per-

spective there is a guarantee that if C does not receive the content (or the content

bought does not fit the description), C has a way to demand the correct content

from D. From D’s perspective, C will not get the content until D receives the

payment. From this, we say that this protocol with fair exchange achieves strong

fairness for D, since D can always be assured of receiving the payment before send-

ing C the content. If not, D simply does not send the content. As for C, in the case

where D receives the payment but C does not receive the content (or the content

is corrupted), C can prove this to A and A will ask D to resend the content. In

the scenario where C actually received the content but claims they have not, D

can resend the content since there is no additional advantage for C to hold many

identical digital copies.

208

8.3 A Protocol with Payment and Fair Exchange

8.3.2 Efficiency

In this section we discuss the performance of the protocol with fair exchange. The

main objective here is to show that while the protocol includes the additional prop-

erty of fair exchange, its efficiency is only marginally poorer than the LYTC protocol

(Section 5.2) on which it is built. Table 8.2 summarises the performance.

Bandwidth. The size of the encrypted marked content [X ′′]HEhekC
transmitted

from C to D is n|m|. This is due to the homomorphic encryption with modulus m

on the n elements of content. This is identical to the LYTC protocol. However, the

FE protocol further requires extra objects to be included in messages to ensure D

receives payment, and C receives content and a receipt. In addition, there is one

extra message where the PA gives C a payment receipt.

Trusted Third Parties. The main extra requirement of the FE protocol is the

PA. It is tasked with generating the client watermark, like the WCA in the LYTC

protocol, but it also needs to ensure payment is received by D, and C receives a

receipt. Hence the PA in the protocol has extra responsibility.

Computation. The computational requirements are identical to that of the LYTC

protocol. This is because the FE protocol uses the same mechanism, homomorphic

encryption, to produce the encrypted marked content. Hence, given that the num-

ber of elements in content and a watermark is n, D needs to compute n modular

exponentiations (nE) to encrypt content, and then n modular multiplications (nM)

to embed the watermark into content in encrypted form. Also, before encrypting

content, D adds n elements of watermark V into content (nA). As for C, n modular

exponentiations (nE) are required to decrypt the encrypted marked content.

Storage. Similarly, the storage requirement is identical to that of the LYTC pro-

tocol. This means that D stores the watermark V (n|Z|), the encrypted watermark

(n|m|) and the encryption key of C (|m|), while C stores his encryption and decryp-

tion keys (2|m|).

Summary. Except for the extra objects in the protocol messages required between

D, C and the PA, and one extra message from the PA to C, the performance of the

FE protocol is comparable to that of the LYTC protocol.

209

8.4 Summary

Table 8.2: Efficiency Comparisons between LYTC Protocol and FE Protocol

Pro. Bandwidth TTP Computation1 Storage2

LYTC [X ′′]HEhekC
= n|m| online C: nE C: 2|m|

WCA D: n(E + M + A) D: (n + 1)|m| + n|Z|
FE [X ′′]HEhekC

= n|m| online C: nE C: 2|m|
3 extra obj. & msg. WCA D: n(E + M + A) D: (n + 1)|m| + n|Z|

1
E=O(k3), M=O(k2), A=O(k)

2 |Z| < |m|

8.4 Summary

In this chapter we have discussed the addition of payment into the main categories of

FaCT protocol, and the requirement of fair exchange, which has not been discussed

before in the context of fair content tracing. We reasoned that fair exchange is

required, especially when payment is involved, since C and D do not trust each

other. Hence we want to make sure not just that the content can be traced fairly,

but also that C receives the correct content while D receives the correct payment.

We showed how this can be performed by adapting payment and fair exchange into

FaCT protocols in all four main categories that we discussed in the previous chapters.

We further presented a new protocol as an example.

210

Chapter 9

Conclusion

Contents

9.1 Main Achievements . 211

9.2 Research Directions . 214

This chapter summarises the thesis. We discuss the main achievements and future

research directions.

9.1 Main Achievements

FaCT protocols were proposed to address the concern of illegal content distribution

by allowing a distributor to trace a client from a found copy of content and prove

this fact to others. At the same time, these protocols ensure that the distributor

cannot use such tracing ability to falsely accuse an innocent client of illegal content

distribution.

The overall goal of the thesis is to analyse existing FaCT protocols and suggest

alternative and better approaches to designing them. We believe that the thesis has

contributed to this in the following ways:

• We proposed a design framework, since existing protocols in the literature

are diverse and difficult to analyse. Based on this framework we were able to

classify existing FaCT protocols into four categories, which facilitates more sys-

tematic analysis and better approaches to designing them. More importantly,

211

9.1 Main Achievements

we were able to pinpoint design issues in some of the existing protocols.

• We examined existing protocols in the first category, which we termed Proto-

cols without Trusted Third Parties, where the main characteristic is that the

client is responsible of generating their own watermark. We analysed the IEH

protocols and demonstrated design flaws, which we summarise in Table 9.1.

We further proposed a Semi-Fair protocol that alleviates issues in the exist-

ing protocols. Our proposal is based on a stronger assumption, namely that

the distributor is assumed to be more trustworthy than the client, which in

turn forces the client to generate a well-formed watermark without requiring

zero-knowledge proof systems.

• We examined Protocols with Online Trusted Third Parties, the second category

in our classification. The main characteristic of these protocols is that an

online trusted WCA generates the client watermarks. We cryptanalysed the

ASSY protocol based on our framework by demonstrating design flaws in this

protocol (Table 9.1). In particular, we showed that the protocol does not

provide non-repudiation of redistribution due to the capability of D framing

C and C successful denial of illegal content distribution.

• We examined Protocols with Offline Trusted Third Parties, the third category

in our classification. We proposed a CE protocol based on Chameleon encryp-

tion [110]. As compared with the recently proposed KTIG protocol, which

we discussed, the main advantage of our proposal is that the involvement of

the trusted third party is a one-off process. This means that after the client

and the distributor obtain key materials for the underlying Chameleon en-

cryption scheme from the trusted third party, the client can conduct many

content requests. In addition, as compared to conventional protocols that use

asymmetric homomorphic encryption, our proposal is more computationally

efficient as shown in the performance summary in Table 9.2.

• We examined Protocols with Trusted Hardware, the fourth category in our

classification. We proposed two protocols based on trusted computing plat-

forms [126]. Our first protocol is based on the Trusted Platform Module (TPM)

and Direct Anonymous Attestation (DAA) [86]. The second protocol is based

on the TPM and a Privacy CA. Both protocols also provide anonymity and

unlinkability.

212

9.1 Main Achievements

• We examined the addition of payment and, with this, the issue of fair exchange,

which has not been discussed before for FaCT protocols. We demonstrated

how payment and fair exchange can be incorporated in the four main categories

of FaCT protocols. We also proposed a FE protocol with payment and fair

exchange. This protocol provides the additional property of fair exchange to

ensure D and C trade content fairly, but with an increase of communication

cost as can be observed from Table 9.2.

Tables 9.1 and 9.2 summarise the security and performance of the FaCT protocols in

the four categories that we have discussed (Section 3.5), where C1 denotes Category

1, protocols without trusted third parties, C2 denotes Category 2, protocols with

online trusted third parties, C3 denotes Category 3, protocols with offline trusted

third parties and C4 denotes Category 4, protocols with trusted hardware.

Table 9.1: Security Analysis of the FaCT protocols in the Four Categories
Pro./Sec. TR FR NR AU Conditions

C1

PS/4.2 X X X × Homomorphic bit commitment scheme.
IEH/4.3 X × × × Deterministic homomorphic encryption.

Susceptible to attacks I, II, III (Section 4.3.3)
and William-Treharne-Ho attack.

SF/4.4 X X X × Stronger assumption: D semi-trusted.

C2

LYTC/ X X X X Deterministic homomorphic encryption.
5.2
WP/5.3 X X X × C must not know ρ and β.

Susceptible to unbinding attack.
ASSY/ X × × × Susceptible to attacks I, II, III (Section 5.4.1).
5.4

C3

MW/3.7 X X X × Susceptible to unbinding attack.
KTIG/ X X X × Relies on h(.) being a secret function.
6.2 Susceptible to unbinding attack.
CE/6.3 X X X × Relies on the security of Chameleon encryption.

C4

FCS/7.2 X X X X Abstract trusted hardware.
DAA/ X X × X1 Security of TPM and DAA.
7.3.2 A weak FaCT protocol.
P CA/ X X X X Security of TPM.
7.3.3

AU+FE/ X X X X Further provides fair exchange.
8.2
1 full anonymity and unlinkability

213

9.2 Research Directions

Table 9.2: Performance of the FaCT Protocols in the Four Categories

Pro./ Bandwidth1 TTP Computation2 Storage1

Sec.

C1

PS/ [X ′′]COM hekC
= n|m| No C: n(y + 1)E C: 2|m| + n|Z|

4.2 y extra pro. msg. TTP D: n(E + M) D: (n + 1)|m| + n|Z|
IEH/ [X ′′]HEhekC

= n|m| No C: 2nE C: 2|m| + n|Z|
4.3 TTP D: n(E + M + A) D: (n + 1)|m| + n|Z|
SF/ [X ′′]HEhekC

= n|m| No C: 2nE C: 2|m| + n|Z|
4.4 TTP D: n(E + M + A) D: (n + 1)|m| + n|Z|
C2

LYTC/ [X ′′]HEhekC
= n|m| online C: nE C: 2|m|

5.2 WCA D: n(E + M + A) D: (n + 1)|m| + n|Z|
WP/ X ′ = n|Z| online C: nA C: n|Z|(0)
5.3 WCA D: nA D: n|Z|
FE/ [X ′′]HEhekC

= n|m| online C: nE C: 2|m|
8.2 3 extra obj. & msg. WCA D: n(E + M + A) D: (n + 1)|m| + n|Z|
C3

MW/ [X ′′]HEhekC
= n|m| offline C: nE C: 2|m| + n|Z|

3.7 WCA D: n(E + M + A) D: (n + 1)|m| + n|Z|
KTIG/ σ[X ′]EK

= 2n|Z| offline C: 2nS C: n|Z|(0)
6.2 KC D: 2n(A + S) D: (L + n)|Z|
CE/ Ev = n|Z| offline C: nsA C: L|Z| (n|Z|)
6.3 KC3 D: nsA D: L|Z| (n|Z|)
C4

FCS [X ′′]HEhek∗
= n|m| D’s C: nE C: 2|m|

7.2 TH3 D: n(E + M + A) D: (n + 1)|m| + n|Z|
DAA/ [X ′′]HEhek∗

= n|m| C’s C: 2nE C: 2|m| + n|Z|
PCA/ TH D: n(E + M + A) D: (n + 1)|m| + n|Z|
7.3.2/
7.3.3
1 |Z| < |m|, |n| < |L|
2 E=O(k3), M=O(k2), A=O(k), S=E/100
3 Higher implementation cost compared to the DAA and PCA protocols

9.2 Research Directions

In the following we describe some potential research directions:

• In our study on FaCT protocols, we have not considered the performance of

these protocols in constrained computing environments. In particular we have

not considered FaCT protocols that execute on a client’s computing platform

that has only small memory size and computing power. In such cases, using

watermarking in the encrypted domain based on asymmetric homomorphic

214

9.2 Research Directions

encryption to provide fair content tracing is likely to be too expensive in terms

of computations and bandwidth. Alternatives such as the protocols described

in Chapters 5 and 6 that deploy symmetric building blocks could be further

studied for this purpose.

• Also, only a heuristic approach to security analysis has been taken. We have

not considered the use of formal approaches to access the security of the pro-

tocols. This is because formal analysis for many of the underlying building

blocks, particularly digital watermarking schemes, is still very much in its

infancy, as can be observed in [2, 64]. Developing formal security will also

require the development of a standard and stable notion of security for the un-

derlying digital watermarking schemes, which is out of the scope of our study.

We note that a formal modeling approach has been initiated by Williams et

al. [134, 135].

• We have only considered the distribution of content as a whole. This means, for

example, the distributor sends a pre-recorded movie or song to the client. We

have not considered streaming of content. It would be interesting to investigate

how the existing FaCT protocols can be adapted to a scenario where the

distributor streams content to the client, while still providing the required

security properties. The key issue, again, is efficiency, since small blocks of

content are sent in real time. Encrypting and watermarking them based on

asymmetric homomorphic encryption will be too computationally expensive.

215

Bibliography

[1] A. Adelsbach, U. Huber, and A.-R. Sadeghi. Fingercasting-Joint Fingerprint-

ing and Decryption of Broadcast Messages. In L. M. Batten and R. Safavi-

Naini, editors, Information Security and Privacy, 11th Australasian Confer-

ence - ACISP 2006, volume 4058 of Lecture Notes in Computer Science, pages

136–147. Springer-Verlag, 2006. Also, Technical Report detailing the ACISP

2006 paper (Private communication with U. Huber).

[2] A. Adelsbach, S. Katzenbeisser, and A.-R. Sadeghi. A Computational Model

for Watermark Robustness. In Jan Camenisch, Christian S. Collberg, Neil F.

Johnson, and Phil Sallee, editors, 8th International Workshop on Information

Hiding - IH 2006, volume 4437 of Lecture Notes in Computer Science, pages

145–160. Springer-Verlag, 2006.

[3] F. Ahmed, F. Sattar, M. Y. Siyal, and D. Yu. A Secure Watermarking Scheme

for Buyer-Seller Identification and Copyright Protection. EURASIP Journal

on Applied Signal Processing, 2006:56904, 15 pages, 2006. doi:10.1155/ASP/

2006/56904.

[4] R. Anderson, C. Manifavas, and C. Sutherland. Netcard - a practical electronic

cash system. In T. Mark A. Lomas, editor, Security Protocols Workshop 1996,

volume 1189 of Lecture Notes in Computer Science, pages 49–57. Springer-

Verlag, 1997.

[5] N. Asokan, M. Schunter, and M. Waidner. Optimistic Protocols for Fair Ex-

change. In Proceedings of 4th ACM Conference on Computer and Communi-

cations Security, pages 7–17, 1997.

216

BIBLIOGRAPHY

[6] Boris Balacheff, Liqun Chen, Siani Pearson, David Plaquin, and Graeme

Proudler. Trusted Computing Platforms: TCPA Technology in Context. Pren-

tice Hall PTR, Upper Saddle River, New Jersey, 2003.

[7] British Broadcasting Corporation (BBC). BBC iPlayer - An Internet TV and

Radio Broadcasting Services, accessed February 2009. Available at: www.bbc.

co.uk/iplayer.

[8] M. Bellare, D. Pointcheval, and P. Rogaway. Authenticated Key Exchange

Secure against Dictionary Attacks. In B. Preneel, editor, Advances in Cryptol-

ogy - EUROCRYPT 2000, volume 1807 of Lecture Notes in Computer Science,

pages 139–155. Springer-Verlag, 2000.

[9] M. Bellare and P. Rogaway. Entity Authentication and Key Distribution. In

D. R. Stinson, editor, Advances in Cryptology - CRYPTO 1993, volume 773

of Lecture Notes in Computer Science, pages 232–249. Springer-Verlag, 1994.

[10] M. Bellare and P. Rogaway. Optimal Asymmetric Encryption. In Alfredo De

Santis, editor, Advances in Cryptology - EUROCRYPT 1994, volume 950 of

Lecture Notes in Computer Science, pages 92–111. Springer-Verlag, 1994.

[11] P. Biddle, P. England, M. Peinado, and B. Willman. The Darknet and the

Future of Content Protection. In Joan Feigenbaum, editor, Proceedings of the

2002 ACM Workshop on Digital Rights Management, volume 2696 of Lecture

Notes in Computer Science, pages 155–176. Springer-Verlag, 2003.

[12] I. Biehl and B. Meyer. Protocols for Collusion-Secure Asymmetric Fingerprint-

ing. In 14th Symposium on Theoretical Aspects of Computer Science (STACS),

1997.

[13] Simon Blake-Wilson and Alfred Menezes. Entity Authentication and Au-

thenticated Key Transport Protocols Employing Asymmetric Techniques. In

B. Christianson, B. Crispo, T. Mark A. Lomas, and M. Roe, editors, Security

Protocols, volume 1361 of Lecture Notes in Computer Science, pages 137–158.

Springer-Verlag, 1997.

[14] G. R. Blakley, C. Meadows, and G. B. Purdy. Fingerprinting Long Forgiving

Messages. In H. C. Williams, editor, Advances in Cryptology - CRYPTO 1985,

volume 218 of Lecture Notes in Computer Science, pages 180–189. Springer-

Verlag, 1985.

217

BIBLIOGRAPHY

[15] D. Boneh and J. Shaw. Collusion-Secure Fingerprinting for Digital Data. In

D. Coppersmith, editor, Advances in Cryptology - CRYPTO 1995, volume 963

of Lecture Notes in Computer Science, pages 452–465. Springer-Verlag, 1995.

[16] C. Boyd and A. Mathuria. Protocols for Authentication and Key Establish-

ment. Information Security and Cryptography Series, Springer-Verlag, 2003.

[17] G. Brassard, David Chaum, and C. Crepeau. Minimum Disclosure Proofs

of Knowledge. Journal of Computer and System Sciences, 37(1988):156–189,

1988.

[18] E. Brickell, J. Camenisch, and L. Chen. Direct Anonymous Attestation. In

Proceedings of 11th ACM Conference on Computer and Communications Se-

curity, pages 132–145. ACM Press, 2004.

[19] J. Camenisch. Efficient Anonymous Fingerprinting with Group Signatures.

In T. Okamoto, editor, Advances in Cryptology - ASIACRYPT 2000, volume

1976 of Lecture Notes in Computer Science, pages 415–428. Springer-Verlag,

2000.

[20] D. Chaum, A. Fiat, and M. Naor. Untraceable Electronic Cash. In S. Gold-

wasser, editor, Advances in Cryptology - CRYPTO 1988, volume 403 of Lecture

Notes in Computer Science, pages 319–327. Springer-Verlag, 1990.

[21] B. Chen and G. W. Wornell. Quantization index modulation: A class of

provably good methods for digital watermarking and information embedding.

IEEE Transaction on Information Theory, 47(4):1423–1443, 2001.

[22] L. Chen, C. Kudla, and K. G. Paterson. Concurrent Signatures. In C. Cachin

and J. Camenisch, editors, Advances in Cryptology - EUROCRYPT 2004,

volume 3027 of Lecture Notes in Computer Science, pages 287–305. Springer-

Verlag, 2004.

[23] J.-G. Choi, G. Hanaoka, K. H. Rhee, and H. Imai. How to break COT-Based

Fingerprinting Schemes and Design New One. IEICE Trans. on Fundamentals,

Special Section on Information Theory and Its Applications, E88-A(10):2800–

2807, 2005.

[24] J.-G. Choi and J.-H. Park. A Generalization of an Anonymous Buyer-Seller

Watermarking Protocol and Its Application to Mobile Communications. In

218

BIBLIOGRAPHY

I. J. Cox, T. Kalker, and H.-K. Lee, editors, Digital Watermarking, Third In-

ternational Workshop - IWDW 2004, volume 3304 of Lecture Notes in Com-

puter Science, page p. 232. Springer-Verlag, 2004.

[25] J.-G. Choi, K. Sakurai, and J.-H. Park. Does It Need Trusted Third Party?

Design of Buyer-Seller Watermarking Protocol without Trusted Third Party.

In J. Zhou, M. Yung, and Y. Han, editors, Applied Cryptography and Network

Security - ACNS 2003, volume 2846 of Lecture Notes in Computer Science,

pages 265–279. Springer-Verlag, 2003.

[26] Jae-Gwi Choi, Ji-Hwan Park, and Ki-Ryong Kwon. Analysis of COT-based

Fingerprinting Schemes: New Approach to Design Practical and Secure Fin-

gerprinting Scheme. In Jessica J. Fridrich, editor, 6th International Workshop

on Information Hiding - IH 2004, volume 3200 of Lecture Notes in Computer

Science, pages 253–265. Springer-Verlag, 2004.

[27] Microsoft Corporation. Windows Media Digital Rights Management, ac-

cessed March 2009. Available at: http://www.microsoft.com/windows/

windowsmedia/forpros/drm/default.mspx.

[28] I. J. Cox, J. Kilian, T. Leighton, and T. Shamoon. Secure Spread Spectrum

Watermarking for Multimedia. IEEE Trans. on Image Processing, 6(12):1673–

1687, 1997.

[29] I. J. Cox, M. L. Miller, J. A. Bloom, J. Fridrich, and T. Kalker. Digital Wa-

termarking and Steganography. 2nd Edition, Morgan Kaufmann Publishers,

2008.

[30] C. Culnane, H. Treharne, and Anthony T. S. Ho. A New Multi-set Modula-

tion Technique for Increasing Hiding Capacity of Binary Watermark for Print

and Scan Processes. In Yun-Qing Shi and Byeungwoo Jeon, editors, Digital

Watermarking, Fifth International Workshop, IWDW 2006, volume 4283 of

Lecture Notes in Computer Science, pages 96–110. Springer-Verlag, 2006.

[31] W. Dai. Crypto++ Library 5.5 Benchmark, accessed February 2009. Available

at: http://www.cryptopp.com/benchmarks.html.

[32] M. Deng and B. Preneel. Attacks On Two Buyer-Seller Watermarking Proto-

cols And An Improvement For Revocable Anonymity. In IEEE International

Symposium on Electronic Commerce and Security - ISECS 2008, 2008.

219

BIBLIOGRAPHY

[33] M. Deng and B. Preneel. On Secure and Anonymous Buyer-Seller Water-

marking Protocol. In Third International Conference on Internet and Web

Applications and Services, ICIW 2008, pages 524–529. IEEE Computer Soci-

ety, 2008.

[34] M. Deng, L. Weng, and B. Preneel. Anonymous Buyer-Seller Watermarking

Protocol with Additive Homomorphism. In SIGMAP 2008 - International

Conference on Signal Processing and Multimedia Applications, pages 300–307,

2008.

[35] A. Dent and C. Mitchell. User’s Guide to Cryptography and Standards. Artech

House, 2004.

[36] T. Dierks and E. Rescorla. The TLS Protocol Version 1.1. RFC 4346, 2006.

[37] H. Dobbertin, A. Bosselaers, and B. Preneel. RIPEMD-160: A Strength-

ened Version of Ripemd. In D. Gollmann, editor, Fast Software Encryption -

FSE 1996, volume 1039 of Lecture Notes in Computer Science, pages 71–82.

Springer-Verlag, 1996.

[38] D. Dolev and A. C. Yao. On the security of public key protocols. In IEEE

22nd Annual Symposium on Foundations of Computer Science, pages 350 –

357. IEEE Computer Society Press, 1981.

[39] J. Domingo-Ferrer. Anonymous Fingerprinting of Electronic Information

with Automatic Identification of Redistributors. IEEE Electronics Letters,

43(13):1303–1304, 1998.

[40] J. Domingo-Ferrer. Anonymous Fingerprinting Based on Committed Oblivious

Transfer. In H. Imai and Y. Zheng, editors, Second International Workshop

on Practice and Theory in Public-Key Cryptography - PKC 1999, volume 1560

of Lecture Notes in Computer Science, pages 43–52. Springer-Verlag, 1999.

[41] S. Katzenbeisser (editor). List of potential applications interested by s.p.e.d.

D3.1, Philips Research (Philips), for Signal Processing in the Encrypted Do-

main (SPEED) Project, IST-2006-034238, Information Society Technologies,

2007. Available at: www.speedproject.eu.

[42] P. Ekdahl and T. Johansson. A New Version of the Stream Cipher SNOW.

In K. Nyberg and H. M. Heys, editors, Selected Areas in Cryptography, 9th

220

BIBLIOGRAPHY

Annual International Workshop, SAC 2002, volume 2595 of Lecture Notes in

Computer Science, pages 47–61. Springer-Verlag, 2003.

[43] T. Elgamal. A public key cryptosystem and a signature scheme based on

discrete logarithms. IEEE Transactions on Information Theory, 31(4):469 –

472, 1985.

[44] Z. Erkin, A. Piva, S. Katzenbeisser, R. L. Lagendijk, J. Shokrollahi, G. Neven,

and M. Barni. Protection and Retrieval of Encrypted Multimedia Content:

When Cryptography Meets Signal Processing. EURASIP Journal on Infor-

mation Security, 2007:78943, 20 pages, 2007. doi:10.1155/2007/78943.

[45] S. Even and Y. Yacobi. Relations among public key signature systems. Tech-

nical Report 175, Technion, Haifa, Israel, March 1980.

[46] C.-I Fan, M.-T. Chen, and W.-Z. Sun. Buyer-Seller Watermarking Protocols

with Off-line Trusted Parties. In Proceedings of the International Conference

on Multimedia and Ubiquitous Engineering (MUE’07), pages 1035–1040. IEEE

Compute Society Press., 2007.

[47] A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identifi-

cation and signature problems. In A. M. Odlyzko, editor, Advances in Cryp-

tology - CRYPTO 1986, volume 263 of Lecture Notes in Computer Science,

pages 186–194. Springer-Verlag, 1987.

[48] C. Fontaine and F. Galand. A Survey of Homomorphic Encryption for Non-

specialists. EURASIP Journal on Information Security, 2007:13801, 10 pages,

2007. doi:10.1155/2007/13801.

[49] M. Franklin and M. K. Reiter. Fair Exchange with a Semi-trusted Third Party.

In Proceedings of 4th ACM Conference on Computer and Communications

Security, pages 1–5, 1997.

[50] F. Frattolillo and S. D’Onofrio. A Web Oriented and Interactive Buyer-Seller

Watermarking Protocol. In Security, Steganography, and Watermarking of

Multimedia Content VIII, Proc. of SPIE, volume 6072, pages 718–716, 2006.

[51] C. Gehrmann and M. Naslund (ERICS) (editors). ECRYPT Yearly Report on

Algorithms and Keysizes (2006). D.SPA.21, Katholieke Universiteit Leuven

221

BIBLIOGRAPHY

(KUL), for ECRYPT Project, IST-2002-507932, Information Society Tech-

nologies, 2006. Available at: www.ecrypt.eu.org/documents/D.SPA.21-1.

1.pdf.

[52] Gnutella.com. Gnutella website, accessed February 2009. Available at: www.

gnutella.com.

[53] B.-M. Goi, Raphael C.-W. Phan, and M. U. Siddiqi. Cryptanalysis of a Gen-

eralized Anonymous Buyer-seller Watermarking Protocol of IWDW 2004. In

T. Enokido, L. Yan, B. Xiao, D. Kim, Y.-S. Dai, and L. T. Yang, editors, Em-

bedded and Ubiquitous Computing - EUC 2005, volume 3823 of Lecture Notes

in Computer Science, pages 936–944. Springer-Verlag, 2005.

[54] B.-M. Goi, Raphael C.-W. Phan, Y. Yang, F. Bao, Robert H. Deng, and M. U.

Siddiqi. Cryptanalysis of Two Anonymous Buyer-Seller Watermarking Proto-

cols and an Improvement for True Anonymity. In M. Jakobsson, M. Yung, and

J. Zhou, editors, Applied Cryptography and Network Security - ACNS 2004,

volume 3089 of Lecture Notes in Computer Science, pages 369–382. Springer-

Verlag, 2004.

[55] O. Goldreich. Zero-Knowledge twenty years after its invention. Department of

Computer Science and Applied Mathematics, Weizmann Institute of Science,

Rehovot, Israel, 2002.

[56] S. Goldwasser and S. Micali. Probabilistic Encryption. Journal of Computer

and System Sciences, 28:270–299, 1984.

[57] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interac-

tive proof-systems. In Proceedings of the seventeenth annual ACM symposium

on Theory of computing, pages 291–304, 1985.

[58] S. Goldwasser, S. Micali, and R. L. Rivest. A Digital Signature Scheme Se-

cure Against Adaptive Chosen-Message Attacks. SIAM Journal of Computing,

17(2):281–308, 1988.

[59] Joint Photographic Experts Group. JPEG website, accessed February 2009.

Available at: www.jpeg.org/jpeg/index.html.

[60] Moving Picture Experts Group. MPEG website, accessed February 2009.

Available at: www.chiariglione.org/mpeg.

222

BIBLIOGRAPHY

[61] M. Hirt and K. Sako. Efficient Receipt-Free Voting Based on Homomorphic

Encryption. In B. Preneel, editor, Advances in Cryptology - EUROCRYPT

2000, volume 1807 of Lecture Notes in Computer Science, pages 539–556.

Springer-Verlag, 2000.

[62] Anthony T. S. Ho and F. Shu. A Robust Spread-Spectrum Watermarking

Method Using Two-Level Quantization. In Proceedings of the 2004 Interna-

tional Conference on Image Processing (ICIP 2004), volume 2, pages 725–728.

IEEE, 2004.

[63] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall Interna-

tional, 1985.

[64] Nicholas Hopper, David Molnar, and David Wagner. From Weak to Strong

Watermarking. In S. P. Vadhan, editor, Theory of Cryptography - TCC 2007,

volume 4392 of Lecture Notes in Computer Science, pages 362–382. Springer-

Verlag, 2007.

[65] I. M. Ibrahim, S. H. Nour El-Din, and A. F. A. Hegazy. An Effective and Secure

Buyer-Seller Watermarking Protocol. In Third International Symposium on

Information Assurance and Security (IAS 07), IEEE Computer Society Press,

pages 21–26, 2007.

[66] I. M. Ibrahim, S. H. Nour El-Din, and A. F. A. Hegazy. An Effective and

Secure Watermarking Protocol for Digital Rights Protection Over the Second-

Hand Market. In SECRYPT 2007 - International Conference on Security and

Cryptography, pages 263–268, 2007.

[67] Amazon.com Inc. Amazon Unbox, accessed February 2009. Available at:

www.amazon.com.

[68] Apple Inc. iTune Store, accessed February 2009. Available at: www.apple.

com/itunes/store.

[69] CinemaNow Inc. CinemaNow, accessed February 2009. Available at: www.

cinemanow.com.

[70] Federal information processing standards (fips 180-2). Secure Hash Stan-

dard, 2001. Available at: csrc.nist.gov/publications/fips/fips180-2/

fips180-2.pdf.

223

BIBLIOGRAPHY

[71] Federal information processing standards (fips 186-2). Digital Signature

Standard (DSS), 2001. Available at: csrc.nist.gov/publications/fips/

fips186-2/fips186-2-change1.pdf.

[72] Federal information processing standards (fips 197). Advanced Encryption

Standard (AES), 2001. Available at: csrc.nist.gov/publications/fips/

fips197/fips-197.pdf.

[73] ISO. Information Technology - Security Techniques - Entity Authentication

Mechanisms - Part 3: Entity Authentication Using a Public Key Algorithm

ISO/IEC 9798-3. ISO/IEC International Standard, 2nd Edition, 1998.

[74] H. S. Ju, H. J. Kim, D. H. Lee, and J. I. Lim. An Anonymous Buyer-Seller

Watermarking Protocol with Anonymity Control. In P. J. Lee and C. H. Lim,

editors, Information Security and Cryptology - ICISC 2002, volume 2587 of

Lecture Notes in Computer Science, pages 421–432. Springer-Verlag, 2002.

[75] S. Katzenbeisser and F. A. P. Petitcolas, editors. Information Hiding: Tech-

niques for Steganography and Digital Watermarking. Computer Security Se-

ries. Artech House, 2000.

[76] S. Katzenbeisser, B. Skorić, M. U. Celik, and A.-R. Sadeghi. Combining Tar-

dos Fingerprinting Codes and Fingercasting. In 9th International Workshop

on Information Hiding - IH 2007, volume 4567 of Lecture Notes in Computer

Science, pages 294–310. Springer-Verlag, 2007.

[77] J. Kilian, F. T. Leighton, L. R. Matheson, T. G. Shamoon, R. E. Tarjan, and

F. Zane. Resistance of Digital Watermarks to Collusive Attacks. Technical

Report TR-585-98, Princeton University, Department of Computer Science,

1988. Available at: ftp://ftp.cs.princeton.edu/techreports/1998/585.

ps.gz.

[78] M. Kim, J. Kim, and K. Kim. Anonymous fingerprinting as secure as the bi-

linear diffie-hellman assumption. In R. H. Deng, S. Qing, F. Bao, and J. Zhou,

editors, Information and Communications Security - ICICS 2002, volume 2513

of Lecture Notes in Computer Science, pages 97–108. Springer-Verlag, 2002.

[79] N. Koblitz. A Course in Number Theory and Cryptography. Graduate Texts

in Mathematics Series, Vol. 114, 2nd Ed., Springer-Verlag, 1994.

224

BIBLIOGRAPHY

[80] M. Kuribayashi and H. Tanaka. A New Anonymous Fingerprinting Scheme

with High Enciphering Rate. In C. Pandu Rangan and Cunsheng Ding, editors,

Progress in Cryptology - INDOCRYPT 2001, volume 2247 of Lecture Notes in

Computer Science, pages 30–39. Springer-Verlag, 2001.

[81] M. Kuribayashi and H. Tanaka. Fingerprinting Protocol for Online-Line Trade

Using Information Gap between Buyer and Merchant. IEICE Trans. on Fun-

damentals, E89-A(4):1108–1115, 2006.

[82] RSA Labs. RSA Encryption Scheme - Optimal Asymmetric Encryption

Padding, 2000. Available at: ftp://ftp.rsasecurity.com/pub/rsalabs/

rsa_algorithm/rsa-oaep_spec.pdf.

[83] RSA Labs. RSA Signature Scheme with Appendix - Probabilistic Signature

Scheme, 2000. Available at: ftp://ftp.rsasecurity.com/pub/rsalabs/

rsa_algorithm/nessie_pss.zip.

[84] RSA Labs. How Fast Is The RSA Algorithm?, accessed February 2009. Avail-

able at: www.rsa.com/rsalabs/node.asp?id=2215.

[85] C.-L. Lei, P.-L. Yu, P.-L. Tsai, and M.-H. Chan. An Efficient and Anony-

mous Buyer-Seller Watermarking Protocol. IEEE Trans. on Image Processing,

13(12):1618–1626, 2004.

[86] A. Leung and G. S. Poh. An Anonymous Watermarking Scheme for Content

Distribution Protection using Trusted Computing. In SECRYPT 2007 - Inter-

national Conference on Security and Cryptography, pages 319–326. INSTICC

Press., 2007.

[87] K. J. Ray Liu, W. Trappe, Z. J. Wang, M. Wu, and H. Zhao. Multimedia

Fingerprinting Forensics for Traitor Tracing. EURASIP Book Series on Signal

Processing and Communication, Volume 4, Hindawi Publishing Corporation,

2005.

[88] YouTube LLC. YouTube - broadcast yourself, accessed February 2009. Avail-

able at: www.youtube.com.

[89] S. H. Low, N. F. Maxemchuk, and S. Paul. Anonymous Credit Cards and

Their Collusion Analysis. IEEE/ACM Trans. on Networking, 4(6):809–816,

1996.

225

BIBLIOGRAPHY

[90] M. T. Malkin. Cryptographic Methods In Multimedia Identification And Au-

thentication. PhD thesis, Department of Computer Science, Stanford Univer-

sity, 2006.

[91] K. Markantonakis, K. Mayes, and F. Piper. Smart Cards for Security and

Assurance. In H. R. Rao and S. J. Upadhyaya M. Gupta, editors, Managing

Information Assurance in Financial Services, pages 166–189. IGI Publishing

Hershey - New York, 2007.

[92] O. Markowitch, D. Gollmann, and S. Kremer. On Fairness in Exchange Pro-

tocols. In P. J. Lee and C. H. Lim, editors, 5th International Conference on

Information Security and Cryptology - ICISC 2002, volume 2587 of Lecture

Notes in Computer Science, pages 451–464. Springer-Verlag, 2002.

[93] Mastercard. Mastercard payment solutions, accessed February 2009. Available

at: http://www.mastercard.com.

[94] N. Memon and P. W. Wong. A Buyer-Seller Watermarking Protocol. IEEE

Trans. on Image Processing, 10(4):643–649, 2001.

[95] Chris J Mitchell, editor. Trusted Computing. IEE Press, 2005.

[96] P. Moulin and R. Koetter. Data hiding codes. Invited Paper, Proceedings of

The IEEE, 93(10), 2005.

[97] T. Okamoto and S. Uchiyama. A New Public-Key Cryptosystem as Secure as

Factoring. In K. Nyberg, editor, Advances in Cryptology - EUROCRYPT 1998,

volume 1403 of Lecture Notes in Computer Science, pages 308–318. Springer-

Verlag, 1998.

[98] H. Pagnia, H. Vogt, and F. C. Gartner. Fair Exchange. The Computer Journal,

British Computer Society, 46(1):55–75, 2003.

[99] P. Paillier. Public-key Cryptosystems Based on Composite Degree Residuosity

Classes. In J. Stern, editor, Advances in Cryptology - EUROCRYPT 1999,

volume 1592 of Lecture Notes in Computer Science, pages 223–238. Springer-

Verlag, 1999.

[100] K. G. Paterson. Id-based signatures from pairings on elliptic curves. IEEE

Electronics Letters, 38(18):1025–1026, 2002. Also available at IACR ePrint:

eprint.iacr.org/2002/004.

226

BIBLIOGRAPHY

[101] PayPal and Inc. PayPal - a safer, simpler way to send and receive money

online, accessed February 2009. Available at: http://www.paypal.com.

[102] B. Pfitzmann and A.-R. Sadeghi. Coin-Based Anonymous Fingerprinting. In

J. Stern, editor, Advances in Cryptology - EUROCRYPT 1999, volume 1592

of Lecture Notes in Computer Science, pages 150–164. Springer-Verlag, 1999.

[103] B. Pfitzmann and A.-R. Sadeghi. Anonymous Fingerprinting with Direct Non-

Repudiation. In T. Okamoto, editor, Advances in Cryptology - ASIACRYPT

2000, volume 1976 of Lecture Notes in Computer Science, pages 401–414.

Springer-Verlag, 2000.

[104] B. Pfitzmann and M. Schunter. Asymmetric Fingerprinting. In U. M. Maurer,

editor, Advances in Cryptology - EUROCRYPT 1996, volume 1070 of Lecture

Notes in Computer Science, pages 84–95. Springer-Verlag, 1996.

[105] B. Pfitzmann and M. Waidner. Anonymous Fingerprinting. In W. Fumy,

editor, Advances in Cryptology - EUROCRYPT 1997, volume 1233 of Lecture

Notes in Computer Science, pages 88–102. Springer-Verlag, 1997.

[106] B. Pfitzmann and M. Waidner. Asymmetric Fingerprinting for Larger Col-

lusions. In 4th ACM Conference on Computer and Communication Security,

pages 151–160, 1997.

[107] Raphael C.-W. Phan and B.-M. Goi. (In)security of an Efficient Fingerprinting

Scheme with Symmetric and Commutative Encryption of IWDW 2005. In

Digital Watermarking, 6th International Workshop - IWDW 2007, Lecture

Notes in Computer Science. Springer-Verlag, 2007.

[108] A. Piva and A. D. Rosa (editors). State of the art report and accom-

panying public presentation(s). D2.1, Universit‘a degli Studi di Firenze

(UNIFI), for Signal Processing in the Encrypted Domain (SPEED) Project,

IST-2006-034238, Information Society Technologies, 2007. Available at:

www.speedproject.eu.

[109] G. S. Poh and K. M. Martin. A Framework for Design and Analysis of Asym-

metric Fingerprinting Protocols. In 2007 International Workshop on Data

Hiding for Information and Multimedia Security attached to IAS 07, IEEE

Computer Society Press, pages 457–461, 2007.

227

BIBLIOGRAPHY

[110] G. S. Poh and K. M. Martin. An Efficient Buyer-Seller Watermarking Scheme

Based on Chameleon Encryption. In H. J. Kim, S. Katzenbeisser, and Anthony

T. S. Ho, editors, To appear in Digital Watermarking, Seventh International

Workshop, IWDW 2008, Lecture Notes in Computer Science. Springer-Verlag,

2008.

[111] G. S. Poh and K. M. Martin. On the (In)security of Two Buyer-Seller Water-

marking Protocols. In SECRYPT 2008 - International Conference on Security

and Cryptography, pages 253–260, 2008.

[112] G. S. Poh and K. M. Martin. Design Flaws of A Secure Watermarking Scheme

for Buyer-Seller Identification and Copyright Protection. International Journal

of Cryptology Research, 1(1):55–64, 2009.

[113] G. S. Poh and K. M. Martin. On the Design of Buyer-Seller Watermarking

Protocols Without A Watermark Authority. In E-Business and Telecommuni-

cation Networks (To appear), Communications in Computer and Information

Science. Springer-Verlag, 2009.

[114] Niladri B. Puhan and Anthony T. S. Ho. Secure Authentication Watermarking

for Localization Against the Holliman-Memon Attack. Multimedia Systems,

12(6):521–532, 2007.

[115] L. Qiao and K. Nahrstedt. Watermarking schemes and protocols for protecting

rightful ownerships and customer’s rights. Journal of Visual Communication

and Image Representation, 9(3):194–210, 1998.

[116] I. Ray, I. Ray, and N. Natarajan. An Anonymous and Failure Resilient Fair-

Exchange E-Commerce Protocol. Decision Support Systems, 39:267–292, 2005.

[117] R. L. Rivest, A. Shamir, and L. Adleman. A Method for Obtaining Digital

Signatures and Public-Key Cryptosystems. Commun. of the ACM, 2(2):120–

126, 1978.

[118] A.-R. Sadeghi. How to Break A Semi-Anonymous Fingerprinting Scheme. In

I. S. Moskowitz, editor, 4th International Workshop on Information Hiding -

IH 2001, volume 2137 of Lecture Notes in Computer Science, pages 384–394.

Springer-Verlag, 2001.

228

BIBLIOGRAPHY

[119] A.-R. Sadeghi and M. Schneider. Electronic Payment Systems. In E. Becker,

W. Buhse, D. Günnewig, and N. Rump, editors, Digital Rights Management -

Technological, Economic, Legal and Political Aspects, volume 2770 of Lecture

Notes in Computer Science, page 113137. Springer-Verlag, 2003.

[120] A.-R. Sadeghi, J. Shokrollahi, and C. Wachsmann (editors). Identification of

Requirements and Constraints. D3.2, Horst Gortz Institute for IT-Security,

Ruhr-University, Bochum, for Signal Processing in the Encrypted Domain

(SPEED) Project, IST-2006-034238, Information Society Technologies, 2007.

Available at: www.speedproject.eu.

[121] M. Schmucker and P. Ebinger. Promotional and Commercial Content Dis-

tribution based on a Legal and Trusted P2P Framework. In Proceedings of

the Seventh IEEE International Conference on E-Commerce Technology (CEC

’05), pages 439–442. IEEE Computer Society Press, 2008.

[122] C. Schnorr. Efficient Identification and Signatures for Smart Cards. In G. Bras-

sard, editor, Advances in Cryptology - CRYPTO 1989, volume 435 of Lecture

Notes in Computer Science, pages 239–252. Springer-Verlag, 1990.

[123] M-H Shao. A Privacy-Preserving Buyer-Seller Watermarking Protocol with

Semi-trust Third Party. In C. Lambrinoudakis, G. Pernul, and A M. Tjoa,

editors, 4th International Conference on Trust, Privacy & Security in Digital

Business (TrustBus 2007), volume 4657 of Lecture Notes in Computer Science,

pages 44–53. Springer-Verlag, 2007.

[124] D. R. Stinson. Cryptography Theory and Practice. Third Edition, Series on

Discrete Mathematics and Its Applications, Chapman & Hall/CRC, 2006.

[125] J. K. Su, F. hartung, and B. Girod. Digital watermarking of text, image, and

video documents. Computers & Graphics, Elsevier, 22(6):687–695, 1998.

[126] Trusted Computing Group (TCG). Trusted computing group website, accessed

February 2009. Available at: www.trustedcomputinggroup.org.

[127] A. Tomlinson. Application and Business Security: Payment and e–commerce

applications. Lecture Notes IY5601, MSc. of Information Security, Informa-

tion Security Group, Royal Holloway, University of London, 2008.

[128] A. Tomlinson. Security For Video Broadcasting. Springer, 2008.

229

BIBLIOGRAPHY

[129] P. Tomsich and S. Katzenbeisser. Towards a robust and de-centralized digi-

tal watermarking infrastructure for the protection of intellectual property. In

K. Bauknecht, S. Kumar Madria, and G. Pernul, editors, Electronic Com-

merce and Web Technologies - EC-WEB 2000, volume 1875 of Lecture Notes

in Computer Science, pages 38–47. Springer-Verlag, 2000.

[130] Trusted Computing Group (TCG). TCG Specification Architecture Overview.

Version 1.2, The Trusted Computing Group, 2004.

[131] Visa and Inc. Visa payment solutions, accessed February 2009. Available at:

http://www.visa.com.

[132] Neal R. Wagner. Fingerprinting. In IEEE Symposium on Security and Privacy,

pages 18–22, 1983.

[133] T. Wiegand, G. J. Sullivan, G. Bjntegaard, and A. Luthra. Overview of the

H.264/AVC Video Coding Standard. IEEE Transactions On Circuits and

Systems for Video Technology, 13(7):560 – 576, 2003.

[134] D. M. Williams, H. Treharne, and Anthony T. S. Ho. Using a Formal Analysis

Technique to Identify an Unbinding Attack on a Buyer-Seller Watermarking

Protocol. In Proceedings of the 10th ACM Workshop on Multimedia and Se-

curity (MM & Sec 2008). ACM, 2008.

[135] D. M. Williams, H. Treharne, Anthony T. S. Ho, and A. Walker. Formal Anal-

ysis of Two Buyer-Seller Watermarking Protocols. In H. J. Kim, S. Katzen-

beisser, and Anthony T. S. Ho, editors, To appear in Digital Watermarking,

Seventh International Workshop, IWDW 2008, Lecture Notes in Computer

Science. Springer-Verlag, 2008.

[136] Y. Wu. Security Flaws in Kuribayashi-Tanaka Fingerprinting Protocol. In

IEEE International Conference on Communications - ICC 2007, pages 1317

– 1322, 2007.

[137] Y. Wu and H. Pang. A Lightweight Buyer-Seller Watermarking Protocol.

Advances in Multimedia, 2008:905065, 7 pages, 2008. doi:10.1155/2008/

905065.

[138] S. Yong and S.-H. Lee. An Efficient Fingerprinting Scheme with Symmetric

and Commutative Encryption. In M.Barni, I. J. Cox, T. Kalker, and H. J.

230

BIBLIOGRAPHY

Kim, editors, Digital Watermarking, 4th International Workshop - IWDW

2005, volume 3710 of Lecture Notes in Computer Science, page p. 54. Springer-

Verlag, 2005.

[139] J. Zhang, W. Kou, and K. Fan. Secure Buyer-Seller Watermarking Protocol.

IEE Proceedings - Information Security, 153(1):15–18, 2006.

[140] Q. Zhang, K. Markantonakis, and K. Mayes. A Practical Fair-exchange e-

payment Protocol for Anonymous Purchase and Physical Delivery. In Pro-

ceeding of the 4th ACS/IEEE International Conference on Computer Systems

and Applications (AICCSA-06), 2006.

231

